arXiv:1609.02336v1 [astro-ph.HE] 8 Sep 2016

DRAFT VERSIONSEPTEMBERY, 2016
Preprint typeset usingTgX style emulateapj v. 01/23/15

A NEW VIEW ON THE MAXIMUM MASS OF DIFFERENTIALLY ROTATING NEUTRON STARS

D. GONDEK-RosINSKAY, I. KowaLskA?, L. VILLAIN 3, M. ANSORG, M. KucaBa®

(Dated: Accepted XXX. Received XXX; in original form XXX)
Draft version September 9, 2016

ABSTRACT

We study the main astrophysical properties of differehtiadtating neutron stars described as stationary and
axisymmetric configurations of a moderately sfif= 2 polytropic fluid. The high level of accuracy and of
stability of our relativistic multidomain pseudo-spetitade enables us to explore the whole solution space
for broad ranges of the degree of differential rotation, dab of the stellar density and oblateness. Staying
within an astrophysicaly motivated range of rotation pefjiwe investigate the characteristics of neutron stars
with maximal mass for all types of families of differentiatiotating relativistic objects identified in a previous
article (Ansorget al|[2009). We find that the maximum mass depends on both the defpld&rential rotation
and on the type of solution. It turns out that the maximunwvedid mass can be up to 4 times higher than what
it is for non-rotating stars with the same equation of st&ach values are obtained for a modest degree of
differential rotation but for one of the newly discovereg@éyof solutions. Since such configurations of stars
are not that extreme, this result may have important coreseags for the gravitational wave signal to expect
from coalescing neutron star binaries or from some supamevents.

Keywords: gravitation — relativity — methods: numerical — stars: ment- stars: rotation.

tions of the matter, nuclear reactions, thermal effectsy-ma
netic fields, etc. Doing so, it is for instance possible talgtu
the influence of the degree of differential rotation or of the
stiffness of the equation of state (EOS) on the maximum mass
which, for rotating stars, can be much higher than for static
stars [see for instance Cook, Shapiro & Teukalsky (1992,

1. INTRODUCTION

Binary neutron star (BNS) mergers are thought to be
promising sources of gravitational waves and of neutrinos
(Rosswog 2015; Bernuzei al! 2016), as well as the pro-
genitors of short gamma ray bursts (Blinnikeial| [1984;
Eichleret al! |11989). After the detection of gravitational oY - :
waves from binary black holes by the LIGO experiment 19944.0); Baumgarte al. (2000); Lyfordet al. (2003)].
(Abbottet all 20165.,b), they are even one of the most ex- N & previous articlel (Ansoret al. 2009) (later referred
pected next targets. The outcome of a BNS merger is thel® @S Paper 1), a new investigation was presented of
formation of a stellar black hole, but the latter can either o (e structure of differentially rotating neutron stars, dno
cur promptly or be slightly delayed and include a stage dur- €lized las constantthnsn)(/j stars ordrecljatl;/lsNGhl(F ol
ing which a massive and warm differentially rotating neu- 2) POlytrops. _ This_study, extended for other poly-
tron star is produced (Shibata & UR2002). Whatever is ~ roPic EOSs in_Studnskaet al (2016), relied on a multi-

the actual scenario, highly sophisticated and realistogs ~ domain spectral code (based on the so_called "AKM-
ical simulations are needed to ascertain the signals to benethod”,LAnsorg, Kleinwachter & Meirel 2003a) that was

expected and consequently to enable us to extract informalormerly shown to enable the calculation of very ex-

: o ; . tremal configurations of rigidly rotating relativistic sta
tion on both the gravitational and the high energy undegdyin (Ansorg, Kleinwachier & Meine| 2008k: Schobel & Ansorg

2003) or rings[(Ansorg 2005%; Ansorg & Petroff 2005). In
Paper I, only star-like configurationsg. with a spheroidal
topology (without a hole), were considered, but allowingavh

physics. Although a lot of progress has been made, build-
ing numerical codes that take into account all the pertinent

physical ingredients is such a difficult task that it is St
from achieved, making useful the resort to simplified stadie

concentrating on some specific aspects. One basic but ke

issue is the maximum life span of the potential short-lived

material remnant, a question which can be approached by fo

cussing first on its maximum mass. The analysis of the in-
volved timescales and of the results of numerical simutetio
(Shibateet al! 12005) shows that a rough but reasonable ap-
proximation to address this problem consists in modelirg th
central body as a stationary axisymmetric rotating reistit
star in differential rotation, neglecting complicatedénmo-
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fre sometimes called "quasi-toroidal” configurations ifcivh

he maximal density is not the central one. The focus was put

on the solution space, and a noticeable result was the discov

ery of four "types" of configurations that co-exist with each
other even for reasonable profiles of angular momentum.

The purpose of the present article is to extend the study of
Paper | by calculating, fdr = 2 polytrops, astrophysicaly rel-
evant quantities, such as the maximal mass, the angular mo-
mentum, the ratio between kinetic and potential energtes, e
Our highly accurate and stable spectral code enable uidor t
first time, to study in detail those properties of differaiiyi
rotating neutron stars taking into account the whole sotuti
space identified in Paper |I. Moreover, the understanding of
the global structure of the parameter space makes it possi-
ble to explain the results of preceding studies, espediadly
works bylBaumgartet al! (2000) ano_Lyforckt al! (2003),
showing that strange features of some sequences they had ob-
tained arise from the fact that their codes were jumping from
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one type of configuration to another due to numerical limi- some kind of specific angular momentum of the fluid. While
tations. Finally, the configurations we have calculatedatou the rotation profile of stationary and axisymmetric rotgtin
be used as initial data to perform in a systematic way the sta-Newtonian barotrops has to be such that the angular veloc-
bility analysis of differentially rotating neutron staradato ity only depends on the distance from the axis of rotation
determine stability criteria for such objects. (Greenspan 1973), it is a well-known fact (Bardeen 1970;
The plan of the article is as follows: in Sectldn 2, we start by [Butterworth & Ipset 1976), that for a relativistic one, cens
recapitulating the issue of differential rotation in réletic vation of the energy-momentum tensor implies the condition
stationary rotating stars, with as a primary goal to desdtile Y = F(Q2), whereF is an arbitrary function. Such a weak
hypothesis done in our work and to define variables and nota-constraint allows for numerous possibilities, some of whic
tions. Then, in Sectiohl 3, we briefly review current knowl- were for instance explored In_Galeazzi, Yoshida & Eriguchi
edges concerning the maximal mass of rotating relativistic (2012);[Unw et al| (2016). Here we should however re-
stars and we present our results in the context of the existen strict ourselves to the now classical law proposed by
of the various types that were introduced in Paper |. Later on IKomatsu, Eriguchi & Hachisu (1989), already used by many
Sectiori 4 focusses on angular momentum and other quantitieauthors (among which_Cook, Shapiro & Teukolsky 1992;
related to rotation and stability after which Sectidn 5 stanm [Bonazzoleet al![1993] Goussarek all[1998] Baumgartet al.
rizes the results achieved, in contrast with those of previo 12000; | Lyfordet al! 2003; | Morrison, Baumgarte & Shapiro
studies. Finally, Appendix]A reviews the feature of the nu- [2004; Villain et al/[2004) and in Paper I:
merical code, displaying tests of convergence and accafacy

our results, putting emphasis on the specificities of theigar F(Q) = A*(Q2: - 9), (5)
used in this article as well as in Paper I. whereA is a parameter with the dimension of a length, while
it can be shown thafy; is the limit of ©2 on the rotation axis.
2. MODELS OF DIFFERENTIALLY ROTATING : N :
RELATIVISTIC STARS More precisely, we shall put Eq.](5) in the form
Stationary and axisymmetric configurations of rotating rel Q= Aa(Y) = Qc - AY (6)
ativistic stars have already been the subject of nhumerous (Are)2’

works, be they analytical or numerical, making this topic . . . .
quite classical (see Stergioulas 2003; Friedman & Stefgiou Vhere we introduced the equatorial radius of therstarhich

2013, for reviews). Since in this article we use exactly the is @ typical lengthscale of the problem, aAd=A/re. No-
same equations and notations as in Paper |, we send the readife that since the rotation profile tends to be rigid (or uni-
to this article for more detail. Here, we shall only remind th  form) whenA — oo (re keeping a finished value), we follow
main assumptions concerning matter and its motion, in theBaumgarteet al. (2000) and parametrize the sequences and
framework of differentially rotating relativistic stars. the degree of differential rotation with

As in Paper I, we work with units such as=G=K =1, A=Al=y /A 7)
wherec is the speed of light in vacuung is Newton'’s con- B e
stant andK is the polytropic constant. The latter is defined We send the reader to Paper | and references therein for more
by the polytropic equation of stat@,= Kk, with T'=2 in details about the basic (astro)physical consequencesf th
this article, which relates the pressyréo the rest-energy (or  law (Newtonian limit, etc.).
baryonic energy) densitg. For reasons that will be reminded For a stationary and axisymmetric barotropic perfect fluid
further, the main thermodynamical variable that shall kedus  in rotation, Bianchi identities (or equivalently the revidtic
is H, the dimensionless relativistic enthalpy defined from the Euler’'s equation) imply that there is a first integral of nootj

pressurep and the total energy densityas that we choose to write
P d H=V\-V-B , 8
H(p) = / P (1) 0 o(Y) (8)
o e(p)+p where:

To smooth the way to comparison with other codes and sys-

tems of units, we remind the reader that far & 2 polytropic i) H is the relativistic enthalpy {1);

equation of state with null temperature, the enthdlpy (i ve G i ;
fies, in unitsG = ¢ = 1 (but without any fixed values &€ for 1) Vis defined by
the time being), u=eV, 9)
H =log(1+2Keg), 2) \p being its value at the North pole;
while the total energy density; that will be used in the fol- iii) and
lowing, satisfies Y dAa(x)
e(eg) = eg + Keé, 3) Ba(Y) = / X dx dx, (10)
0
so that . : .
with A introduced in E .
e(H) = % (eZH - 1) ) 4) ¢ ae)

Working with the law [(b), a configuration of a star corre-
Describing the rotational properties is made much easiersponds to a solution of the first integral of motion together
by introducing the fluid angular velocity with respect to in- with the Einstein equations and a given equation of state
finity, O = u®/u!, where theu-variables are the non-zero (I =2 polytrop here), which is obtained by fixing three pa-
components of the four-velocity, and an auxiliary variable rameters such as the maximal enthatpy the central angular
that we shall writeY, defined asy = u‘us and which is velocity Q2. and theA quantity. Due to the non-linear nature
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parametrized by the ratio of the polar to the equatorialusdi

uniqueness of the solution if those are indeed the fixed quandaio = rp/re. We start with a static, spherically symmetric

tities, a feature that makes the solution space even riblaer t

it is for rigidly rotating stars, as was shown and discussed i
Paper I. Furthermore, we remind that a sufficiently high de-
gree of differential rotation can make the enthalpy (or equi
alently some density) taking its maximal value outside ef th
symmetry axis, so that its central value is not an optimum pa-

configuration 4o = 1, and then construct the sequence by
decreasing;ao Of, equivalently, by increasing the central an-
gular velocityQ). or the angular momentut) until we reach
the mass-shed limit or a star withyio = 0.

As was found in Paper I, for each fixed value of the maxi-
mum energy densitymayx, there is a critical degree of differ-

rameter to fix. In the code used for this work, the resort to ential rotationAuit(ema), below which such a sequence termi-
a Newton-Raphson scheme enables us to easily change theates at the mass-shedding limit. Sequences of this kine wer
fixed parameters (see the Appenidix A) and to explore the so-assigned théype A. On the other hand, when the degree of

lution space by freely varying any parameters. Among the
convenient quantities adapted to uniquely specify a faat+o
ing star are the ratio between its polar and equatorial radii
Iratio = rp/r~e, with 0 < reatio < 1, and the rescaled shedding

parametep defined in Paper | by

x_ B
ﬂ - ma (11)
with (see_Ansorg et al. 2003b)
__red@)
A== g I (12)

where the equation= z,(p) describes the surface of the star.
It can be verified that & 8 < 1, that3 — 1 when a star en-
ters into the toroidal regimé.€. rraio — 0), that3 — 0 in
the mass-shedding limit and that= 1/2 for a non-rotating
spherical star.

As stated in the Introduction, we shall focus in this article
on the issue of the structure of differentially rotatincatelis-
tic stars with maximal mass, which will be the topic of the
next Section. Having in mind astrophysical scenarios sgch a
the collapses or the mergers described earlier, we shaikin t
following also briefly discuss quantities related to ratatand
instabilities, such as the angular momentum, the ratio éetw
kinetic and gravitational energies, or the Kerr parameter.

3. MAXIMUM MASS OF NEUTRON STARS

For a given equation of state, the maximum mass of
non-rotating neutron stardVihaxsta) iS Obtained by solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equations, vary
ing the value of the central energy densiy Calcula-
tions show that, for realistic EOSs, it belongs to the range
2-2.5 Mg. In the case of rigid rotation, the centrifu-
gal force enables its value to be higher by 12%-20% for
neutron stars (e.g. Cook, Shapiro & Teukolsky 1994a,b) and
by ~ 35% for strange stars (Gondek-Ruskaet al| 2000;
Gourgoulhoret al!11999). Other studies established that dif-
ferential rotation can even be much more efficient, mak-
ing possible an increase of the maximum mass by more

than 60%, especially for moderately stiff polytropic EOSs %

(Baumgartest al![2000; Lyfordet al)[2003). As we will ex-
plain, our work demonstrates that, in the same conditions a
considered in those previous studies, the actual effecifof d
ferential rotation can in fact be stronger.

3.1. Comparison with previous studies

Following |Baumgartet all (2000), we study the rest-
massMg of axisymmetric differentially rotating’ = 2 poly-
trops by building sequences of configurations for fixed value
of the degree of differential rotatiohand of the maximal en-
ergy densityemax in the range~ 0 to 0.6. Each sequence is

differential rotatiomAis larger tharAqit(emax), S€equences with
fixed emax Starting from a static body do not end at the Kep-
lerian limit but enter into the regim of toroidal bodies whkos
topology is not simply-connected: a hole appears at their ce
ter whenr 4, = 0. We call thentype C sequences.

For each sequence, be it of type A or C, we looked for the
maximum mass. Figufé 1 shows the rest-mdgsersus ago
for three examples of sequences with fixed maximal densi-
tiesemax @andA, and for configurations close to the maximum
mass. The left panel corresponds to stars with a modest de-
gree of differential rotatio = 0.5, which end at the mass-
shedding limit and are consequently of type A. On the curves,
the mass-shedding limit is reached for the smallest noh-nul
value ofr 410 that is displayed and that our code always en-
abled us to calculate. As stated earlier, a configuration at
the Keplerian limit is characterized = 0. The vanishing
of this rescaled shedding-parameter is evidence of the pres
ence of a cusp at the equator for this kind of configurations.
One consequence is that once we have obtained configura-
tions in the neighbourhood of the mass-shedding limit, it is
easier, with the Newton-Raphson scheme, to reach the Keple-
rian limit by decreasing rather tham 0. As is illustrated by
the examples depicted on Fig. 1, the maximum mass is found
close to but not at the mass-shedding limit (except in the cas
of uniformly rotating stars). More precisely, we observest
the smallerA is, the closer the configuration with maximum
mass is to the mass-shedding limit.

As for the right pane~l of Fid]~1, it showdg versus o for
type C sequences with=1 > A.j. For such sequences, the
maximum mass is always obtained o4, = 0, independly
of the value ofeyax Or of A. Notice however that, as in Paper
I, we consider in this article only stars without a hole, whic
implies that we arbitrarily terminate this type of sequenat
I'ratio = 0, While the mass can probably become even larger for
other non-simply-connected configurations with same &alue
of emax andA.

In Fig.[2, we illustrate some of our results by showing the
maximum rest mas8lgmax as a function of the maximum en-
ergy densityemax for sequences starting from a non-rotating
configuration and with fixed degrees of differential rotatio
A=0.5, 07 and 1. In other words, each curve represents the

upper limit on the rest-mass for a givén For those values,

lines marked byA= 0.5 and 07 contain maxima for sequences
classified as type A, while foA = 1.0 they are of type C.
We also displayed the results for static stars (lowest ifog)
rigidly rotating stars at the mass-shedding limit (cormsgp
ing to A=0) and, for comparison, we included calculations by
Baumgarteet al! (2000) (dash-dotted lines). It can easily be
observed that the agreement with their results is very good f
small and moderate degrees of differential rotattoand/or
small values of the maximal energy densify... However,
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Figurel. Rest mass versus the ratio of the polar to equatorial radiuweg ssequences with fixed energy densifiax and close to the configuration with the
maximum mass in the sequence. The left panel correspondsyteisces of configurations with a modest degree of differlerdtation @A = 0.5), classified

as type A configurations, while the right panel displays seges forA = 1.0, which are of type C. For each sequence of type A, the corfiigur with the
maximum mass is marked withcaoss and the terminal configuration (with the smallest value,gf,) is at the mass-shedding limit. For type C sequences, we
arbitrarily end the sequence whegi, = 0 (hence considering only stars with a spheroidal topolmgywith a toroidal shape, see Hig. 3) and the maximum mass
was found to be reached for such configurations.

Hinax tions with the maximum allowed mass depending on the de-
0.102 03 04 0.5 0.6 0.7 gree of differential rotation, we show in Figurk 3 their shap
0.45 ‘ ‘ ‘ ‘ for A=0 (rigid rotation), 05 and 07 (both belonging to type A
0.4 sequences), but alsh= 1.0 (a type C solution). Since for

rigid rotation the maximum mass is obtained at the Keplerian
limit, the surface of the star is not smooth, but exhibitspsus
along the equator. On the contrary, as SooA &9, the maxi-
mum mass corresponds to a configuration whose outer surface
is regular. As can be seen, the higlietthe further from the
shape with cusps the maximum mass configuration is. No-
tably, the configuration wittA = 1.0 has a toroidal shape,
but belongs to spheroidal topology (being the last simply-
connected object in the type C sequence).
L In Table[1, we summarize the properties of differentially ro
0.1 0.2 0.3 0.4 0.5 0.6 tating stars with maximum allowed mass, fgrthe degree of
differential rotation, ranging from 0 to.8. For type A solu-
tions, the higheA is, the higher are the allowed ma¥gmax
Figure 2. Upper limits on the maximum rest malk versus the maximum the compactness parameMVRCirc (WhereM and Rerc are
engergy denFs)iFt)y o) (or maximum enthalpyhey for differentially roat. the gravitational mass and the circumferential stellaiusd

ing neutron stars described by the= 2 polytropic equation of state for three respe_zctlvely), the an_gul_ar momentmhe ratio between the
fixed values ofA (0.5, 0.7 and 10). For comparison, the results for static stars kinetic and the gravitational potential energiedV, and the
(TOV) and rigidly rotating stars at mass-shed limk£ 0) are also shown.  Kerr parameted /M? (which are indicators of the onset of in-

Our results are displayed as solid lines, while the dasteddines corre- e . -

spond to calculations made by Baumgattel! (Z2000) for the same equation stabilities for rOtat_'ng stars, see SeCt.r! 4)' The hI94RlB‘,

of state. Following the classification introduced in Papéné sequences are  the lower the maximum energy density is. Note that for con-

of type AforA=0.5 or 07, and of type C foA = 1.0 (see Sectiofil3 formore  figurations with the maximum mass belonging to the type A

detail). solution, the maximal density is always located in the atell
center. In contrast, for type C sequences, the maximum al-
lowed massViomax is always obtained forraio = 0 and it is a

for larger degrees of differential rotation or energy deesj decreasing function o&. For such configurations, its highest

the discrepancy between their results and ours becomes morgalue is obtained for the smallest possible valud ebmpat-

and more visible. This illustrates that with the high level 0 jple with type C & = A,ir), which is~ 0.7 for thel = 2 poly-

accuracy and of stability of our AKM-method based code (see ropic EOS. However, despite what could have been expected,

Append|xhlﬂ), Wel(\j/vgre able_dto rga_lch solutions Wl'(th bhlghgr Momax iS NOt @ continuous function & due to the existence

masses than could be considered in previous works based off the different types, and more specifically to the ambiguit

other algorithms. For each fixed value of the degree of differ ¢ qofinition of the types for configurations with= A .

ential rotationA, we also indicated on Fig] 2 with a cross the This ambiguity, as we shall see in the next subsection, is re-

maximum allowed mass (the maximum of maxima). lated to the fact that, as was shown in Paper |, there are in the
To illustrate further the differences between the configura
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Figure 3. Isocontours of the relativistic enthalpy in meridional cross-sections of stars with the maximunwvesio mass for rigidly rotating neutron stars at the
mass-shedding limitX = 0, left upper panel) and three fixed degrees of differentition A = 0.5 (right upper panel, type Ap = 0.7 (left lower panel, type A)

andA = 1.0 (right lower panel, type C).

solution space other types of sequences than those discussgossesses a saddle-point which belongs to the separatrix an
up to now (types A and C). Furthermore, as can already beat which the four types coexist (see Paper | for details).
seen in Tabl€ll, those types can be associated to even higher Having this in mind the two types of sequences without a

masses than the most common type A.

3.2. Maximum mass for all types of solution

In Paper I, it was shown that, for fixeghax and moderate
degree of differential rotation, there are sequences o$,sta
without a static limit, coexisting either with type A or type

static limit, type B and type D, are defined as follows:

e Type B are one-dimensional sequences that start at the
mass-shedding limit4 = 0) but continously enter into
the toroidal regimergaio — 0), when fixingemax and
A, but varying another suited parameter. As a conse-
guence, they are always characterized by small values

C sequences. They belong to new types of sequences, called of I'raio @nd, as type C sequences, in our study they ar-

type B andtype D respectively, and exist only thanks to dif-
ferential rotation. The four types of one-dimensional para
eter sequences, denot&¢dB, C andD, are illustrated in the

(rrat.o,B plane for fixedemax = 0.12 by Fig[4, on which it can

be seehthat there are two threshold valuesfiyfrespectively
Ag andAp, such that types A and B coexist ng < A< Agi,
while types C and D are found whélp > A > Agi. For a

givenemax, the minimal value of the degree of differential ro-
tation, Ag, for which the type B exist, is the minimum of the

A(ﬁ) function for fixedr,atio = 0, and S|m|IarIyAD is the max-

imum of theA(r,at.o) function for flxedﬂ 0. On the other
hand, the curve with = A is a separatrix which divides the

plan in four domains. For a givetax, thg value~ot&crit can
be determined thanks to the fact that #@ 40, 5) function

6 We remind the reader that, in such a plangai§ = 1,53 = 0.5) corre-

sponds to a spherical static star, whilgf, = 0,8 = 1) is the entrance in the

toroidal regim and3 = 0 is associated to the mass-shedding limit.

bitrarily end at (ratio = O,B =1). They are found for
Ag <A < Aciit;

e Type D also start at the mass-shedding limit(0) but,
unexpectingly, they terminate there as well. As illus-
trated by Figl. %, configurations of this type fill a smaller
part of the solution space and are less easily found than
those of all other types. They appearAy> A> Agit.

_ The three threshold_values @ are functions ofemax
As(emax) < Acrit(émax) < Ap(emax). Hence, another useful way
to depict the various domains of (co)existence of the types
of sequences consist in indicating them in thg,, A) plane.
This is done for thd" = 2 EOS on Figl_b, which shows that,
for all reasonable values ef,.x the solution space has more
or less the same structure.

Having understood the global structure of the solution
space, we were able to explore it in detail thanks to the high
level of flexibility of our Newton-Raphson based code (see



Table 1
Properties of stars with maximal rest-madgnax for all types of sequences and faiin [0; 1.5]. In addition to the mass, for
each configuration are displayed the ratio between thealearid equatorial angular velocitieQd/2e), the ratio between
the kinetic and gravitational binding energids/(W/|), the ratio between the polar and equatorial ragj (e), the maximum
enthalpyHmax, the maximum energy densithax (with the central energy density in units ofemax), the angular
momentumJ, the Kerr parametel/M? (with M the gravitational mass) and the compactness parametBEic (With Reirc
the circumferential radius). For more detail on the acoyraee Appendik A.

TYPE A Qc/Qe Momax T/IW| rp/re Hmax emax(€c/€max) J /M2 M/Reire
0.0 1.000 0.206941 0.0832 0.58479 0.43773 0.350 (1) 0.0200690 0.17373
0.1 1.027 0.207924 0.0856 0.57966 0.43702 0.349 (1) 0.0208B773 0.17393
0.2 1.108 0.210921 0.0926 0.56477 0.43524 0.347 (1) 0.02216014 0.17448
0.3 1.240 0.216118 0.1042 0.54132 0.43151 0.343 (1) 0.02406389 0.17557
0.4 1422 0.223975 0.1204 0.51059 0.42494 0.335(1) 0.02828871 0.17759
TYPEA 0.5 1.657 0.235568 0.1419 0.47306 0.41433 0.323(1) 034m6 0.7440 0.18122
0.6 1959 0.253800 0.1708 0.42686 0.39772 0.304 (1) 0.04288094 0.18834
0.7 2507 0.295169 0.2222 0.35240 0.37329 0.306 (1) 0.0623.8921 0.21434
0.8 2999 0.46319 0.2937 0.005 0.16416 0.097 (2.e-4) 0.175B023  0.2504
TYPEC 0.9 3.382 0.43357 0.2854 0.002 0.16750 0.100 (2.e-5) .1526 1.008 0.2450
1.0 3.805 0.40851 0.2771 0.005 0.1720 0.103 (2.e-4) 0.13389890 0.2415
15 6.420 0.32590 0.2379 0.01 0.1968 0.121 (6.e-4) 0.07838970. 0.2275
0.4 1.785 0.721s 0.336 0.035 0.152 0.089 (0.016) 0.422 1.078.270
TYPEB 0.5 2.006 0.639s 0.335 0.114 0.145 0.084 (0.26) 0.340.0821 0.246
0.6 2.223 0.571s 0.331 0.144 0.140 0.081 (0.51) 0.277 1.088.2220
0.7 2.443 0.510s 0.324 0.164 0.140 0.081 (0.75) 0.225 1.091.2010
TYPED 0.8 2.6279 0.4485 0.3116 0.1825 0.14242 0.0823940.940.178 1.096 0.177
1 2 [ T T T T I T T T T I T T T T I T T T T I T T T I_
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Figure4. Typical structure of the solution space illustrating, ie (ato, 3) E
plane, the various types of sequences for several valubs digree of differ- max

[
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ential rotationA. The curves show the dependency between the shedding Pa-Figure5. Regions of existence of A, B, C and D types of differentialby r

rameters and the ratio between polar and equatorial ragdiy, for I' = 2 poly-
tropic stars with fixed maximal energy densityax=0.12 (Hmax=0.2). The
bold curve corresponds to the separatrix sequence AvittAqir = 0.75904,
which divides the diagram in 4 regions containing sequentégpes: A (a
lower right corner), B (a lower left corner), C (above sepacpand D (be-

tween types A and B).

AppendixA), which allows to fix or vary any parameter. As
can be guessed from F[g. 4, the shedding-paramkitewell
suited for finding type B sequences with fixddand emay,

maximum mass of this type of sequences by following such
curves in the solution space. On Hig. 6, we show typical re-

sults obtained when studying the rest migsas a function

of 5. As explained earlier, all lines start at the mass-shedding

limit (3 = 0) and end when entering into the toroidal regim

(3 =1). It was found that for type B, the configuration with strongly pinched and oblate.
maximum mass was always at one or the other of these two Before commenting further our results, and especially the

tating neutron stars sequences in the plakenfax). The central (red) curve
indicates the critical valueit(emax) Which corresponds to the separatrix, on
which all types (A, B, C and D) of solutions coexist. The greashed line
and the blue dash-dotted line correspond to the lower lifhéxistence of
type B,Ag, and to the upper limitAp, of existence of type D, respectively.
For A < Ag(emax) of A > Ap(emax), only one type remains, respectively A or
C.

positions in the solution space (which can easily be seen for
the examples depicted on Fid. 6). More precisely, when the

at least when we are not too close to the entrance into themaximum energy densitymax Was sufficiently low, the con-
toroidal regim (a0 = 0,3 = 1). Hence, we looked for the

figuration with maximum mass was at the Keplerian limit,
while with increasingmax it jumped to €at0 = 0,5 =1). One
example of the shape of a star belonging to a type B sequence

at the Keplerian limit and with,, ~ 0 was shown in Fig. 1
of Paper I. Itillustrates that the stability of our numeticade

allows calculations of extreme configurations simultarsipu
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] ) - ) Figure8. MaxirTJum rest masMomax as a function of the maximum energy
Figure6. Rest mass/g as a function of8 along sequences ¢ype B with densityemax for A= 0.7. Curves associated to type A and type B sequences
fixed emax (and for all of themA = 0.8). are represented. We also plotted the result for static,stargigid rota-

tion (A =0), and the data 6f Baumgareal! (2000) (dash-dotted line), as in
Fig.[2. One easily observes that stars of type B can be muck massive
05 -— than those of type A.

e/ T T

A=0.8 , type D — Enax= 009

should not only consider configurations reached from acstati
limit. As a matter of fact, when two neutron stars merge,
- which is one of the situations of interest for studies of maxi
mum masses, a haive expectation could even be that the shape
of the material remnant would, at first, be closer to that of a
more toroidal type B configuration than to the more spherical
shape of a type A star.
. On Fig.[8, we come back to some of the results already
shown on Figl R and display the maximum rest mdgsax as
a function of the maximum energy density,x for sequences
with a fixed degree of differential rotatiod = 0.7 [to make
T easier the comparison we kept the curves for rigid rotation,
0.3 01 02 03 04 05 06 07 for static stars as well as the dash-dotted line associatibt

= calculations of Baumgart al! (2000)]. However, this time,

B in addition to the results obtained for type A sequences, we
Figure7. Rest mas#/p as a function of3 along sequences ofpe D with also included those for type B (whose existenceXer0.7 is
fixed emax (and for all of themA = 0.8). proven by Figd ¥4 and 5).

From this figure, one concludes that type B stars can sustain
a much higher mass than the more common type A configura-
values of the maximum mass obtained, we shall mention thatlions: If one compares with rigid rotation, the mcreasegmzft
a quite similar procedure was applied to look for the maxi- Maximum mass can even be as large as around 150% (more
mum mass of type D sequences. It led to typical results asth@n 05 compared to- 0.2). The same kind of conclusions
those shown by Fidil7, which illustrates that the maximum &rises from a careful study of the solution space for all $ype
mass was always reached for one of the two mass-sheddin§©F instance, Fid.19 shows the maximum rest Maggax ver-
configurations belonging to the sequence (more precisely th Sus the maximum energy densityax for A= 0.8 stars. As
mass was always for the one with the smalfest). can be noticed f~rom Fid.] 5, this value of the degree of dif-
As was already explained, the structure of the solution ferential rotationA is one of the few for which all 4 types of
space is such that, for fixegha andA, there can be several ~solution can exist. More precisely, for low valuesgfy, one
types of configurations that exist simultaneously. It means hasAcit(emax) > 0.8, So that the configurations are of types A
that there is not always a unique solution to the system ofand B, while for large values @fax, Acrit(émax) < 0.8, and the
equations for given values of the three parameters needed taonfigurations are of types C and D, the transition being for
calculate one, depending on what are the chosen parameters;,,, ~ 0.08 such thaf\,;; = 0.8 (see Fig[b).
More precisely, we have seen (Hig. 5) that there is some over- One of the important conclusions that can be drawn from
lap between the domains of existence of types A and B, butFig.[g is that types C and D stars also give rise to masses much
also between C and D, if one fixegax and variesA. Conse- larger than those of rigidly rotating stars, even for reaba
quently, when looking for the maximum mass for fixeghx degree of differential rotation and maximum energy density
andA, as illustrated by curves similar to those on Fi. 2, all The precise values that we obtained for the highest incigfase
types of sequences have to be taking into account and on¢he maximum rest mass (for givéy within sequences of type
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Figure9. Maximum rest masMomax @s a function of the maximum energy

n Figure 10. Highest increase of the maximum rest-mass with respecatic st
densityemax for A= 0.8 and all types of solutions.

configurations as a function & for all types of sequences. As in Table 1,
only one value is given for type D due to the narrowness of asain of
existence (see text for more detail). For comparison, we display the

C and D are presented in Table 1, together with other physicalresults of Lyfordet all (2003).
properties of those configurations that we shall describe in
SectiorL 4. Due to the quite small domain of existence of type
D, be itin the émax, A) plane (visible on Fid.]5) or in & o, 5)
plane with fixedemax andA (visible on Fig[4), we included
only one typical value for this type. Finally, we represehte
the highest increase of the maximum rest mass with respect
to static configurations for all types of sequences on[Fiy. 10
in which we also displayed the results of Lyfadal! (2003)

for comparison.

To sum up our results, we found that the maximum mass of
differentially rotating neutron stars depends on both tee d
gree of differential rotation and the type of solution. From
Fig.[10, one deduces that the maximum mass is an increas-

ing function ofA for type A solution (associated to alowand  The most obvious quantity to start with is angular mo-
modest degree of differential rotation), and a decreasing-f mentumJ, which is depicted on Figufe L1 as a function of
tion for types B and C. Furthermore, configurations from the the maximal energy densitynax for stars withA = 0.8. A
newly discovered types B and C can possess masses muckraightforward remark to do is that for types A and C the
larger than those of the type A. More precisely, the highesti minimal value ofJ for fixed emaxis 0, while it is not for types
crease of the maximal mass, around 4 times the maximal statiq and D, which results from the fact that types A and C admit
mass, was obtained for a modest degree of differentiaiootat non-rotating limits while B and D do not (see Paper | or
and for configurations belonging to type B sequences whichrigurg4). Then, one can notice that for a given value.f,
were not taken into account in other studies, mainly due 0 nU the angular momentum stored in a type B star is always larger
merical limitations. Stars of type B sequences are indeed ve than in a type A star, as was already the case for the mass.
oblate objects, with toroidal shapes such thab < 0.25. The  Again, in agreement with what was the situation for the mass,
agreement of our results with those_of Lyfatchl| (2003) is  the angular momentum of a type C star of fixed maximal en-
very good for type A solutions, and good for a modest degreeergy density can be both higher or lower than for a type D star.
of differential rotationA=0.8-1.0, for type C solutions. Our
calculations of the maximum allowed mass are consequently |f one no longer fixes the maximal energy density, one no-
the first which take into account all types of solutions. How- tices that the values taken by the angular momentum can be
ever, the obtained value of the maximum mass is much highermuch higher for types B, C or D stars than for type A. Since
than the mass of the heaviest stars known up to now. Itis natusuch high values are reached for very small ratios of the radi
rally an open question whether the considered configuration and possibly for stars that don’t have a non-rotating lithis
could be stabilized by differential rotation. implies that calculations made only by accelerating a TOV
star shall miss most of those configurations. Also, one can
4. ROTATIONAL PROPERTIES see that when the maximal energy density is close to the tran-
For astrophysical purposes, the question of the maximalsition value which corresponds to the separatrix (see Raper
mass of differentially rotating neutron stars is strongly r  Sectior.8 and Figurie 5), there seems to be a huge gap in the
lated to that of their stability. Even without doing dynamalic ~ maximal angular momentum for the type A star of highest
simulations or stability analysis, some basic conclusiars ~ maximal energy density and for the type C star of smallest
be drawn from the study of rotational properties of the stars maximal energy density, both being equaletqux,ses such
some of which are listed in Tak[é 1. In this Section, we shall that Acrit(emax.scs) = 0.8, see Figllb. However, as we briefly

focus on some on those properties, restricting the disoassi

e the comparison of the different types of configurations
that all co-exist ifA is fixed atA = 0.8 (as can be seen
on Figure[b), a value of the degree of differential rota-
tion which is an intermediate one;

e their evolution for stars with maximal mass whén
changes (see Tallg 1).

4.1. Angular momentum



discussed in Sectidd 3, there is here an ambiguity in the def-

inition of the types linked to the fact that for configuratson

exactly on the separatrix, type A and C share a branch: on Fig-

urel4, it is the right one among the two which are going from
the point of intersection of the separatrix lines (in botuljte
mass-shedding limit (the horizontal axis defineddy 0).

Then, one shall notice that for stars of type A and D (but not
B or C), the configurations with the highest valuelafre also

those with the maximal mass, so that they are (see Sédtion 3)

o for type A: close to but not at the mass-shedding limit
(exception done of the case of rigid rotation);

o for type D: for the smallest value of;; among the two
mass-shedding limit configurations (see Figdre 7).

As far as types B and C are concerned, the situation is
slightly different, maybe due to the fact that those types in
clude stars with a vanishing polar radius (since we decided
not to study stars with a hole) which have complicated inter-
nal distributions of physical quantities. More specifigaile
observed that

o for type B: the maximal is found at the mass-shedding
limit, which is also the maximal mass for maximal en-
ergy densities not too close to the transition value (see
Section[B). On Fig. 11, this explained the continuity
between the maximal of types B and D wheBna in-
creases. Notice that on this figure, the configurations of
maximal mass for type B are indicated by a dotted-line;

o for type C: configurations with maximal are very
close to those of maximal mass (at vanishing polar ra-
dius, see Section 3), but they do not exactly coincide
with them.

Finally, if one comes back to Tablé 1 to have a glimpse
at the influence oA on J, one can see that increasing the
degree of differential rotation.g. increasing®) allows higher
maximal values ofl only for stars of type A. For types B and
C, itis the opposite, as was already the case with the maxima
mass (see Sectignh 3).

4.2. Kinetic energy to gravitational energy ratio (T /|W|)
and instabilities

For observational purposes, a quantity which is more
directly interesting than the angular momentumTig|W|,
the ratio between the kinetic (rotational) enerfyand the
gravitational binding energW. This ratio indeed plays the
role of an order parameter (Bertin & Radicati 1976) and is
a good indicator of the possible onset of instabilities that
can be source of gravitational waves (Andersson 2003). It is
displayed on Fid. 12 for stars with = 0.8.

This figure shows many similarities with the figure for an-
gular momentund (Fig.[11), for instance in the facts that

¢ type B allows for higher values than type A;

o for types A and C the minimal value if 0, while it is not
for types B and D;

e there seems to be a discontinuity of the maximal value
when one goes from type A to type C, which is again
due to the ambiguity in the definition of the types on the
separatrix;

0.20

0.15}
~0.10} & <

0.051

0.00 5.0 020 0.5 035 040
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010 0.5

Figure 11. Ranges of angular momentum as a function of the maximal en-
ergy densityemax for types A, B, C and D withA = 0.8. For types A and D,

the upper limit always corresponds to the configuration wigimum rest
mass. For type C, they nearly coincide, while for type B, this case at low
emax, but not when one approaches the separatrix. In such conslitthe
maximal angular momentum of type B stars is found for the rsassiding
limit whereas the configurations of maximal mass are inditdty a dotted-
line on this figure (see text for more detail).

e for types A and D, the maximal value &F/|W| is
obtained for the configuration with maximal mass,
whereas for type C they almost coincide and for type
B it happens only for the lowest,ax.

However, one shall also notice some changes with respect
to the situation fod:

¢ the relative difference between the possible values for
type A and for other types is not as large fof|W| as
it was forJ;

| e type C does not allow larger values than type D;

o for all types, the maximal value depends much less on
emax than it did forJ.

As far as the influence of the degree of differential rotation
is concerned, Tablg] 1 tells us that in a way similar to what
happens folJ and Mo, the maximal value ofl /|W/| is an
increasing function of this degreeg of A) only for stars
of type A, and it is a decreasing one for types B and C. Of
course, this table also confirms that much higher values of
T/|W| can be reached for types other than A.

Indeed, another result illustrated by F[g.] 12 is that for
all configurations of types B and DT /|W| is at least
equal to 02, which leads to the legitimate question of the
(dynamical) stability of such stars [see_Shibatal! (2000);
Andersson|(2003)]. The study of this stability is beyond
the scope of this work since it requires making dynamical
simulations |(Baumgartet al! [2000;| Shibatat al! 2000) or
analysis of perturbations, but refering to previous staidie
one can expect such dynamical instabilities as the soetalle
bar-mode instability. Furthermore, as we are dealing here
with differentially rotating stars, another kind of insiitly
could be triggered, the so-called IoW/|W| instability [see
for instance Krugeet al!| (2010) and references therein]. As a
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Figure 12. Ranges of the ratio between the kinetic and the potentiabese

as a function of the maximal energy densityax for types A, B, C and D
with A= 0.8. Notice that for type B and the higheshax, configurations of
maximal T /|W| and maximal mass do not coincide. The latter appear in this
figure as a dotted-line. Again, there is no gap between tles lof maxima

for types B and D since on the separatrix they coincide at thesashedding
limit of lowest rrat (see text for more detail).

0.20

€max

Figure13. Ranges of the ratio between the central and equatorial angul
velocitiesQ2c /e as a function of the maximal energy densikyax for types

A, B, C and D withA=0.8.

relation between the later and the appearance of a coantati

point has been suggested [see Passamonti & Andersso
(2015) and references therein], an easy way to get some mor

information on the possible stability of the configurations
under study here is by depicting the ratio between centil an
equatorial angular velocitie./ 2, as is done on Fi§. 13 for

stars withA = 0.8.

Again, the picture is quite similar to the previous oneshwit

o type B which corresponds to higher values than type A,;

e types A and C which have 0 as a minimal value whereas

types B and D do not;

e an apparent discontinuity of the maximal value when
one goes from type A to type C, which is still due to the
ambiguity in the definition of the types on the separa-
trix.

However, the raticf)./Qe differs from the other quanti-
ties by the fact that, for types B and D, its maximal value
is obtained for the configuration with maximal mass, while
for types A and C they only almost coincide. Notice that the
value of this ratio for the configuration of maximal mass is so
close to its maximal value that we do not indicate it on Eig. 13

As far as the quantitf/Q. itself is concerned, this fig-
ure shows that types B, C and D (and especially type C)
allow large values (up to 5 foA = 0.8, a moderate degree
of differential rotation), which implies a large window of
possible corotation for instabilities such as those stlidtie
Krugeret all (2010) to be triggered. As we stated earlier, we
shall not enter more into the detail of this topic, and we just
notice to conclude that Tab[é 1 displays, as one can expect,
a strong and positive correlation between the valu@gfe
for the star with maximal mass and the valuefof

4.3. Kerr parameter J/M?

To conclude our brief study of rotational quantities forsta
with maximal mass or with a rotation profile characterized by
A =0.8, we shall look at the so-called Kerr paramel¢h?
whose value cannot be larger than 1 for a rotating black hole
in general relativity. Indeed, it has been suggested [see fo
instance_Giacomazzs al! (2011)] that supra-Kerrian stars
whose collapse would lead to a naked singularity are some-
how stabilized so that the cosmic censorship conjectur-is r
spected. As previously done for other rotational quargtie
we picture on Fig._14 the Kerr param:atle/rl\/l2 as a function
of emax for stars from all types and with = 0.8, and we show
this parameter for all stars with maximal mass but variolts va
ues ofA and types in Tablgl 1.

From the table or the figure, it can easily be checked that as
soon as the density is large enough, no supra-Kerrian config-
uration exist, a conclusion quite similar to what was foumd i
Gilacomazzet all (2011). More precisely, for types A, B and
C, the Kerr parameter is a decreasing functioa.@f. Addi-
tionally, we observe from Tablé 1 that for stars with maximal
mass,J/M? is an increasing function of the degree of differ-
ential rotation Q) for types A and B, whereas it is a decreas-
ing one for type C. Furthermore, the Kerr parameter is always
larger than 1 for type B stars and it can be so for type D stars
whose maximal density is not too large (such as the star with
maximal mass displayed in Taljle 1). Although we previously
saw that quantities such ag/|W| or 2./ strongly suggest
that they are not stable, the fact that the Kerr parameter is
}@rger than 1 for such configurations could be a possible indi
§ation of their quasi-stability. Indeed, the dynamical glian

ions of [Glacomazzet al| (2011) showed that supra-Kerrian
stars seem to be stabilized by differential rotation. Ifesth
conclusions from Giacomazabal. (2011) are correct, the fi-
nal collapse of such stars would be associated with theaxcit
tion of various modes, making them very interesting sources
of gravitational waves. Nevertheless, as was alreadydsttate

be properly dealt with, this issue would require some dynam-
ical study or some perturbative analysis which are far bdyon
the scope of the current work.

5. DISCUSSION OF THE RESULTS AND CONCLUSION
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Figure14. Ranges of the ratio between the angular momentum and the
square of the gravitational mask,M?, the so-called Kerr parameter which
cannot be larger than 1 (limit indicated by the black hortabline) for a ro-
tating black hole in general relativity. It is displayed éeas a function of the
maximal energy densitymax for types A, B, C and D wittA = 0.8.

Using a highly accurate spectral code based on the Newton-

Raphson scheme, we calculated configurations of relativist
differentially rotating neutron stars modeled 2s= 2 poly-

11

(always higher than 1 for stars with the maximum mass be-
longing to types B and D and for some of type C), which
could imply that they are somehow stabilized. However, the
definitive answer to that question has to come from otheranal
ysis, be they perturbative or fully dynamical. A few hydredy
namical studies_ (Baumgareal | [2000;| Shibatat al. [2000;
Glacomazze@t al!2011) have already shown that supra-Kerr
stellar models seem dynamically stable but are subjectrto va
ious secular instabilities leading to the emission of geavi
tional waves. Another complementary approach would natu-
rally be to use the configurations we have calculated asiniti
data to perform dynamical evolutions of differentially abt

ing neutron stars and to study the stability criteria fortsuc
objects.

To be of physical interest, the conclusions drawn in our
study should as well be supported by further investigations
with more relatistic descriptions of the microphysics,lsas
the equation of state. |n Studkaet al| (2016), we present
results concerning the influence of the stiffness of a popjitr
equation of state on the various types of configurations and
on their properties to examine how robust our results are. In
other articles, we shall study the maximum mass of strange
stars [(Szkudlare&t al| 2016) and analyse in detail the rota-
tional properties of neutron stars described by realisDSE
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APPENDIX

THE NUMERICAL SCHEME

As in Paper I|(Ansorgt al![2009), the numerical calculations are done using a pseedtspcollocation point method that
utilizes two domains: (i) a domain which covers the fluid®eiior, and (ii) a spatially compactified domain describiing fluid’s
exterior. In order to avoid Gibbs phenomena, we choose thevamn boundary between the two domains to coincide with the
surface shape of the fluid configuration. This shape is notkrepriori but forms part of the elliptic ‘free’ boundary value
problem to be solved. Each of the two subdomains is charaeteby a mapping

F=olst), Z=Z(st), (st)e[0,1] (A1)

wherep andz are the coordinates used in the metric (see Paper I) and WwHalels the subdomain& € {0;1}). Here we
have used the fact that the solutions are axially and eqgafyosymmetric from which it follows that the metric coefiénts are
functions of the coordinate square$,andz?.

For the coordinate transformation

(st) = (0% 2)

we take care of the fluid’s unknown surface shape by meanséalomensional functiofs,

G:[0,1] — R.
In particular we write:
o Exterior subdomairk = 0:
oa(s )=t [ri-r3+£%(9)] (A2)
Z(s,t)=(1-1) [€3(9)—rp] +G(t) - rét (A3)
with
9=t (A%)
sinh[(1-9)loge
o(9)=1- W , (A5)
G(t=0)=r3, (A6)
G(t=1)=r2. (A7)
Here,r, andr. describe the polar and equatorial radii respectively.
The boundaries of the exterior domain are described by:
s=0: Spatial infinity,\/ 0%+ 2 — oo (A8)
s=1: Surface of the fluid, given by : (A9)
{(gz,zz) = (rgt,[G(t)—rgt] ).t €[0,1]} (A10)
t=0: Rotation axisp =0 (A11)
t=1: Equatorial planez=0 (A12)
e Interior subdomaink =1:
h(st)=rat (A13)

Z(s,t)=s[G(t)-rit] . (A14)
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Figure 15. Example for mappings of interior and exterior domains, B€B).(The coordinate transformations being chosen are fipalty suited to extremely
flattened configurations.

The boundaries of the interior domain are described by:

s=0: Equatorial planeg=0 (A15)
s=1: Surface of the fluid, as i (A9) (Al16)
t=0: Rotation axisp=0 (A17)
t=1: Equatorp=re2=0 (A18)

The mapping of the exterior subdomain is chosen to resenhltdéeospheroidal coordinates in which the entire class afldain
spheroids exhibits a rapid spectral convergence rate. &oergl highly flattened relativistic stars we find, howevteat the
spectral convergence rate can be improved considerabhfioyrrg the exterior spectral mesh in the vicinity of the flsisurface.
We achiS:/Be this by rescaling the coordinstémd adjusting the free parameteintroduced in E(AB). For an illustrative example
see FiglIb.

In our pseudospectral collocation point scheme, all flamsl) * (x = 0...ngq— 1) to be determined by the free boundary value
problem are considered at specific gridpoiists;ti j) in the subdomaink € {0; 1}. These gridpoints are given through:

i
i=sif| ——— | i=0...n®¥-1 A19
Sk.,l <2(n(ks) _ 1)> Kk ( )
tizsit (). j=o.n®-1 A20
K, j (2(n(kt) _1)> J k ( )

The integers'](ks) andn‘kt) describe the number of gridpoints in the domlaimith respect to the- andt-directions {.e. the spectral

expansion orders). While® may be different from®, we assume the same numbs§= n{) of gridpoints at the common
domain boundary.
We collect all function values

Uij =U" (S ) (A21)

as well as the values of the unknown surface func@®@; = G(ty ), in order to build up a vectdr. In addition, this vector is
filled with two physical parameters that characterize, fgiven equation of state, the configuration. In particulag, shoose
them to beV; [value ofV at the center, see definitidd (9)] afid [see definitiond(5) of{6)]. Note that it is sometimes pdssib
find more than one solution to a given pair of parameters.

The collection of elliptic equations valid in the subdongitransition conditions at the common domain boundaryyéme
ishing pressure boundary condition at the fluid’s surfackaantain parameter relations that one wishes to fulfillldyéediscrete
non-linear system of the form

FOEMy=0 (A22)
wheren stands for the collection of afil® andn{,

n={(n®,nM);k=0;1} .
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The dimension of this system is given by
1
Ntotal = neqz n(ks) n(kt) + NG + Npar, (A23)
k=0

with ng = ng) andnpa= 2. In particular, the transition conditions require théto be continuous and to possess continuous normal
derivatives. At domain boundaries which correspond toipostof the rotation axis or the equatorial plane, we requigeilarity
conditions, which follow from the elliptic equations whepegialized to this boundary. Via the integrated Euler eiqud@8), the
vanishing pressure boundary condition restricts the piatsrat the fluid’s surface. It addg; equations to the system. Finally,
we may include specific parameter relations that we wish tealisfied. For example, we could just prescribe certainesafar
the physical parameters contained.itdowever, we also might wish to prescribe other parametstsad, say rest mabt and
angular momenturd of the objects. For this reason we include thg physical parameters into the vecfand add the specific
parameter relations to the system.

The solutiorf®™ of the discrete algebraic system (A22) describes the spegiproximation of the solution to the free boundary
value problem. We find the vect8P using a Newton-Raphson scheme,

QT (n)
f n!mofm , (A24)
-1
O =10 — [JO )] 7 FO (1) | (A25)
where the Jacobian matrix is given by
o = OF
= 5 (A26)

Note that for the convergence of the scheme a ‘good’ iniﬁ.ais;ff)”) is necessary which we provide through a known nearby
function.
The linear step inside the Newton-Raphson soliverthe solution of

JO.5f =-FO

is performed with the preconditioned ‘Biconjugate Gradi€tabilized (Bi-CGSTAB)' method (Barre#t al! |11993). A good
convergence of this method requires a so-called precondity, which we construct in complete analogy to Anssiral/ (2004)
and| Ansorg|(2005) through a second or fourth order finiteed#ifice representation of the Jacobian matrix of the n@atin
system.

For most configurations considered in this article, nunasgolutions with extremely high accuracy were obtainedhaimod-
erate computational effort. This is illustrated by Figl 1Bieh displays the accuracy reached for some astrophysicahpeters,
e.g. the baryon mass, the circumferencial radius and thel@angomentum, for a typical example of a not too oblatg{ = 0.36)
type A star with a moderate degree of differential rotatidrm=(0.7) and a modest maximum enthalpy{x = Hc = 0.38). More
precisely, on this figure, are represented the relativedifices between thmth spectral approximarg, of all these quantities
(denotedS) and their approximant of order 36, as functions of the nunmbef spectral points. In the case of more extreme
configurations (e.g. close to the Keplerian linfit= 0, or to the entrance in the toroidal regimg;i, = 0), the number of points
needed to get a similar accuracy was larger, but the codepls®ared able to perform the calculations. For subcriticafigu-
rations,n = 24 was sulfficient, while for extreme ones, upte 34 was sometime necessary. On Eigd. 16 can be observedehat th
accuracy reached for such resolutions is of the order o°+1.0™".

To conclude this Appendix on the numerical scheme, we shiflyp describe the method used and the precision reached
to identify differentially rotating neutron stars with mexum mass among all types of solutions, which was the maith gfoa
this article. Fig[Il illustrates the precision and the rodtin the €;at0,Hmax) plane for type A stars witlh = 0.7. Once a
rough estimation of the position in thei,, Hnax) plane was obtained (after building sequences as desarikthé main text
of the article), the code was used to find the valutlgffor each configuration associated t@o;, Hmaxj), wherei = 0, 1..,imax
andj = 0,1.., jmax, With typical values ofimax and jmax in the range 5 15. Then the maximum mass was determined as the
extremum of theMo(ratio, Hmax) function in that region of the plane, the correspondindficumation being also identify. Notice
that when looking for the extremum of a smooth function sueMg(rati0, Hmax), @ spectral algorithm could also be used. The
accuracy reached for theh spectral approximant dflomax is shown on the right panel of Fig.]17, while the left panekgrés
the correspondingatic andHmax. All values were obtained fafax = jmax = 10.
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Figure 16. lllustration of the geometrical convergence rate for trst neassVlp, the angular momentuhand the circumferential radil®;c of a differentially

rotating neutron star described by a polytropic EOS With2. This configuration is of type A and characterized by a éegf differential rotatio® = 0.7, a ratio
of the coordinate radiiraiio = 0.36 and a maximal enthalfmax = 0.38. For all three quantities, the plot displays the accudddige nth spectral approximatio&,,
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Figure 17. Left panel: lllustration of the method used and of the pieniseached when localizing the configuration with maximuassfor type A sequences
with A=0.7 (as shown in Tab[g|1). Right panel: geometrical convergeate for the maximum rest masly and for the corresponding maximum enthakiyfax
and ratio between the polar and equatorial ragdijj,. More specifically, the plot displays the relative accuratyhe nth spectral approximations with respect to
the 34th.



