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ABSTRACT
We study the main astrophysical properties of differentially rotating neutron stars described as stationary and
axisymmetric configurations of a moderately stiffΓ = 2 polytropic fluid. The high level of accuracy and of
stability of our relativistic multidomain pseudo-spectral code enables us to explore the whole solution space
for broad ranges of the degree of differential rotation, butalso of the stellar density and oblateness. Staying
within an astrophysicaly motivated range of rotation profiles, we investigate the characteristics of neutron stars
with maximal mass for all types of families of differentially rotating relativistic objects identified in a previous
article (Ansorget al. 2009). We find that the maximum mass depends on both the degreeof differential rotation
and on the type of solution. It turns out that the maximum allowed mass can be up to 4 times higher than what
it is for non-rotating stars with the same equation of state.Such values are obtained for a modest degree of
differential rotation but for one of the newly discovered type of solutions. Since such configurations of stars
are not that extreme, this result may have important consequences for the gravitational wave signal to expect
from coalescing neutron star binaries or from some supernovae events.
Keywords: gravitation – relativity – methods: numerical – stars: neutron – stars: rotation.

1. INTRODUCTION

Binary neutron star (BNS) mergers are thought to be
promising sources of gravitational waves and of neutrinos
(Rosswog 2015; Bernuzziet al. 2016), as well as the pro-
genitors of short gamma ray bursts (Blinnikovet al. 1984;
Eichleret al. 1989). After the detection of gravitational
waves from binary black holes by the LIGO experiment
(Abbottet al. 2016a,b), they are even one of the most ex-
pected next targets. The outcome of a BNS merger is the
formation of a stellar black hole, but the latter can either oc-
cur promptly or be slightly delayed and include a stage dur-
ing which a massive and warm differentially rotating neu-
tron star is produced (Shibata & Uryū 2002). Whatever is
the actual scenario, highly sophisticated and realistic numer-
ical simulations are needed to ascertain the signals to be
expected and consequently to enable us to extract informa-
tion on both the gravitational and the high energy underlying
physics. Although a lot of progress has been made, build-
ing numerical codes that take into account all the pertinent
physical ingredients is such a difficult task that it is stillfar
from achieved, making useful the resort to simplified studies
concentrating on some specific aspects. One basic but key
issue is the maximum life span of the potential short-lived
material remnant, a question which can be approached by fo-
cussing first on its maximum mass. The analysis of the in-
volved timescales and of the results of numerical simulations
(Shibataet al. 2005) shows that a rough but reasonable ap-
proximation to address this problem consists in modeling the
central body as a stationary axisymmetric rotating relativistic
star in differential rotation, neglecting complicated inner mo-
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tions of the matter, nuclear reactions, thermal effects, mag-
netic fields, etc. Doing so, it is for instance possible to study
the influence of the degree of differential rotation or of the
stiffness of the equation of state (EOS) on the maximum mass
which, for rotating stars, can be much higher than for static
stars [see for instance Cook, Shapiro & Teukolsky (1992,
1994a,b); Baumgarteet al. (2000); Lyfordet al. (2003)].

In a previous article (Ansorget al. 2009) (later referred
to as Paper I), a new investigation was presented of
the structure of differentially rotating neutron stars, mod-
elized as constant density stars or relativisticN = 1(Γ =
2) polytrops. This study, extended for other poly-
tropic EOSs in Studzińskaet al. (2016), relied on a multi-
domain spectral code (based on the so called “AKM-
method”, Ansorg, Kleinwächter & Meinel 2003a) that was
formerly shown to enable the calculation of very ex-
tremal configurations of rigidly rotating relativistic stars
(Ansorg, Kleinwächter & Meinel 2003b; Schöbel & Ansorg
2003) or rings (Ansorg 2005; Ansorg & Petroff 2005). In
Paper I, only star-like configurations,i.e. with a spheroidal
topology (without a hole), were considered, but allowing what
are sometimes called "quasi-toroidal" configurations in which
the maximal density is not the central one. The focus was put
on the solution space, and a noticeable result was the discov-
ery of four "types" of configurations that co-exist with each
other even for reasonable profiles of angular momentum.

The purpose of the present article is to extend the study of
Paper I by calculating, forΓ = 2 polytrops, astrophysicaly rel-
evant quantities, such as the maximal mass, the angular mo-
mentum, the ratio between kinetic and potential energies, etc.
Our highly accurate and stable spectral code enable us, for the
first time, to study in detail those properties of differentially
rotating neutron stars taking into account the whole solution
space identified in Paper I. Moreover, the understanding of
the global structure of the parameter space makes it possi-
ble to explain the results of preceding studies, especiallythe
works by Baumgarteet al. (2000) and Lyfordet al. (2003),
showing that strange features of some sequences they had ob-
tained arise from the fact that their codes were jumping from
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one type of configuration to another due to numerical limi-
tations. Finally, the configurations we have calculated could
be used as initial data to perform in a systematic way the sta-
bility analysis of differentially rotating neutron stars and to
determine stability criteria for such objects.

The plan of the article is as follows: in Section 2, we start by
recapitulating the issue of differential rotation in relativistic
stationary rotating stars, with as a primary goal to describe the
hypothesis done in our work and to define variables and nota-
tions. Then, in Section 3, we briefly review current knowl-
edges concerning the maximal mass of rotating relativistic
stars and we present our results in the context of the existence
of the various types that were introduced in Paper I. Later on,
Section 4 focusses on angular momentum and other quantities
related to rotation and stability after which Section 5 summa-
rizes the results achieved, in contrast with those of previous
studies. Finally, Appendix A reviews the feature of the nu-
merical code, displaying tests of convergence and accuracyof
our results, putting emphasis on the specificities of the version
used in this article as well as in Paper I.

2. MODELS OF DIFFERENTIALLY ROTATING
RELATIVISTIC STARS

Stationary and axisymmetric configurations of rotating rel-
ativistic stars have already been the subject of numerous
works, be they analytical or numerical, making this topic
quite classical (see Stergioulas 2003; Friedman & Stergioulas
2013, for reviews). Since in this article we use exactly the
same equations and notations as in Paper I, we send the reader
to this article for more detail. Here, we shall only remind the
main assumptions concerning matter and its motion, in the
framework of differentially rotating relativistic stars.

As in Paper I, we work with units such asc = G = K = 1,
wherec is the speed of light in vacuum,G is Newton’s con-
stant andK is the polytropic constant. The latter is defined
by the polytropic equation of state,p = K ǫΓB , with Γ = 2 in
this article, which relates the pressurep to the rest-energy (or
baryonic energy) densityǫB. For reasons that will be reminded
further, the main thermodynamical variable that shall be used
is H, the dimensionless relativistic enthalpy defined from the
pressurep and the total energy densityǫ as

H(p) =
∫ p

0

d p
ǫ(p) + p

. (1)

To smooth the way to comparison with other codes and sys-
tems of units, we remind the reader that for aΓ = 2 polytropic
equation of state with null temperature, the enthalpy (1) veri-
fies, in unitsG = c = 1 (but without any fixed values ofK for
the time being),

H = log(1+ 2K ǫB) , (2)

while the total energy densityǫ, that will be used in the fol-
lowing, satisfies

ǫ(ǫB) = ǫB + K ǫ2
B , (3)

so that

ǫ(H) =
1

4K

(

e2H − 1
)

. (4)

Describing the rotational properties is made much easier
by introducing the fluid angular velocity with respect to in-
finity, Ω = uφ/ut, where theu-variables are the non-zero
components of the four-velocity, and an auxiliary variable
that we shall writeY , defined asY = ut uφ and which is

some kind of specific angular momentum of the fluid. While
the rotation profile of stationary and axisymmetric rotating
Newtonian barotrops has to be such that the angular veloc-
ity only depends on the distance from the axis of rotation
(Greenspan 1973), it is a well-known fact (Bardeen 1970;
Butterworth & Ipser 1976), that for a relativistic one, conser-
vation of the energy-momentum tensor implies the condition
Y = F(Ω) , whereF is an arbitrary function. Such a weak
constraint allows for numerous possibilities, some of which
were for instance explored in Galeazzi, Yoshida & Eriguchi
(2012); Urȳu et al. (2016). Here we should however re-
strict ourselves to the now classical law proposed by
Komatsu, Eriguchi & Hachisu (1989), already used by many
authors (among which Cook, Shapiro & Teukolsky 1992;
Bonazzolaet al. 1993; Goussardet al. 1998; Baumgarteet al.
2000; Lyfordet al. 2003; Morrison, Baumgarte & Shapiro
2004; Villain et al. 2004) and in Paper I:

F(Ω) = A2 (Ωc − Ω) , (5)

whereA is a parameter with the dimension of a length, while
it can be shown thanΩc is the limit ofΩ on the rotation axis.
More precisely, we shall put Eq. (5) in the form

Ω = AΩ(Y ) = Ωc −
Y

(Â re)2
, (6)

where we introduced the equatorial radius of the starre, which
is a typical lengthscale of the problem, andÂ = A/re. No-
tice that since the rotation profile tends to be rigid (or uni-
form) whenA → ∞ (re keeping a finished value), we follow
Baumgarteet al. (2000) and parametrize the sequences and
the degree of differential rotation with

Ã = Â−1 = re/A . (7)

We send the reader to Paper I and references therein for more
details about the basic (astro)physical consequences of this
law (Newtonian limit, etc.).

For a stationary and axisymmetric barotropic perfect fluid
in rotation, Bianchi identities (or equivalently the relativistic
Euler’s equation) imply that there is a first integral of motion,
that we choose to write

H = V0 − V − BΩ(Y ) , (8)

where:

i) H is the relativistic enthalpy (1);

ii) V is defined by

ut = e−V , (9)

V0 being its value at the North pole;

iii) and

BΩ(Y ) =
∫ Y

0
x

dAΩ(x)
dx

dx , (10)

with AΩ introduced in Eq (6).

Working with the law (5), a configuration of a star corre-
sponds to a solution of the first integral of motion together
with the Einstein equations and a given equation of state
(Γ = 2 polytrop here), which is obtained by fixing three pa-
rameters such as the maximal enthalpyHm, the central angular
velocityΩc and theÃ quantity. Due to the non-linear nature
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of this system of equations, there is nevertheless not always
uniqueness of the solution if those are indeed the fixed quan-
tities, a feature that makes the solution space even richer than
it is for rigidly rotating stars, as was shown and discussed in
Paper I. Furthermore, we remind that a sufficiently high de-
gree of differential rotation can make the enthalpy (or equiv-
alently some density) taking its maximal value outside of the
symmetry axis, so that its central value is not an optimum pa-
rameter to fix. In the code used for this work, the resort to
a Newton-Raphson scheme enables us to easily change the
fixed parameters (see the Appendix A) and to explore the so-
lution space by freely varying any parameters. Among the
convenient quantities adapted to uniquely specify a fast rotat-
ing star are the ratio between its polar and equatorial radii,
rratio = rp/re, with 0 < rratio < 1, and the rescaled shedding
parameter̃β defined in Paper I by

β̃ =
β

β + 1
, (11)

with (see Ansorg et al. 2003b)

β = −
r2

e

r2
p

d(z2
b)

d(ρ2)
|ρ=re , (12)

where the equationz = zb(ρ) describes the surface of the star.
It can be verified that 0< β̃ < 1, thatβ̃ → 1 when a star en-
ters into the toroidal regime (i.e. rratio → 0), that β̃ → 0 in
the mass-shedding limit and thatβ̃ = 1/2 for a non-rotating
spherical star.

As stated in the Introduction, we shall focus in this article
on the issue of the structure of differentially rotating relativis-
tic stars with maximal mass, which will be the topic of the
next Section. Having in mind astrophysical scenarios such as
the collapses or the mergers described earlier, we shall in the
following also briefly discuss quantities related to rotation and
instabilities, such as the angular momentum, the ratio between
kinetic and gravitational energies, or the Kerr parameter.

3. MAXIMUM MASS OF NEUTRON STARS

For a given equation of state, the maximum mass of
non-rotating neutron stars (Mmax,stat) is obtained by solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equations, vary-
ing the value of the central energy densityǫc. Calcula-
tions show that, for realistic EOSs, it belongs to the range
2-2.5 M⊙. In the case of rigid rotation, the centrifu-
gal force enables its value to be higher by 12%-20% for
neutron stars (e.g. Cook, Shapiro & Teukolsky 1994a,b) and
by ∼ 35% for strange stars (Gondek-Rosińskaet al. 2000;
Gourgoulhonet al. 1999). Other studies established that dif-
ferential rotation can even be much more efficient, mak-
ing possible an increase of the maximum mass by more
than 60%, especially for moderately stiff polytropic EOSs
(Baumgarteet al. 2000; Lyfordet al. 2003). As we will ex-
plain, our work demonstrates that, in the same conditions as
considered in those previous studies, the actual effect of dif-
ferential rotation can in fact be stronger.

3.1. Comparison with previous studies

Following Baumgarteet al. (2000), we study the rest-
massM0 of axisymmetric differentially rotatingΓ = 2 poly-
trops by building sequences of configurations for fixed values
of the degree of differential rotatioñA and of the maximal en-
ergy densityǫmax in the range∼ 0 to 0.6. Each sequence is

parametrized by the ratio of the polar to the equatorial radius
rratio = rp/re. We start with a static, spherically symmetric
configuration,rratio = 1, and then construct the sequence by
decreasingrratio or, equivalently, by increasing the central an-
gular velocityΩc or the angular momentumJ, until we reach
the mass-shed limit or a star withrratio = 0.

As was found in Paper I, for each fixed value of the maxi-
mum energy densityǫmax, there is a critical degree of differ-
ential rotationÃcrit(ǫmax), below which such a sequence termi-
nates at the mass-shedding limit. Sequences of this kind were
assigned thetype A. On the other hand, when the degree of
differential rotationÃ is larger thañAcrit(ǫmax), sequences with
fixed ǫmax starting from a static body do not end at the Kep-
lerian limit but enter into the regim of toroidal bodies whose
topology is not simply-connected: a hole appears at their cen-
ter whenrratio = 0. We call themtype C sequences.

For each sequence, be it of type A or C, we looked for the
maximum mass. Figure 1 shows the rest-massM0 versusrratio
for three examples of sequences with fixed maximal densi-
tiesǫmax andÃ, and for configurations close to the maximum
mass. The left panel corresponds to stars with a modest de-
gree of differential rotatioñA = 0.5, which end at the mass-
shedding limit and are consequently of type A. On the curves,
the mass-shedding limit is reached for the smallest non-null
value ofrratio that is displayed and that our code always en-
abled us to calculate. As stated earlier, a configuration at
the Keplerian limit is characterized bỹβ = 0. The vanishing
of this rescaled shedding-parameter is evidence of the pres-
ence of a cusp at the equator for this kind of configurations.
One consequence is that once we have obtained configura-
tions in the neighbourhood of the mass-shedding limit, it is
easier, with the Newton-Raphson scheme, to reach the Keple-
rian limit by decreasing̃β rather thanrratio. As is illustrated by
the examples depicted on Fig. 1, the maximum mass is found
close to but not at the mass-shedding limit (except in the case
of uniformly rotating stars). More precisely, we observed that
the smallerÃ is, the closer the configuration with maximum
mass is to the mass-shedding limit.

As for the right panel of Fig. 1, it showsM0 versusrratio for
type C sequences with̃A = 1> Ãcrit. For such sequences, the
maximum mass is always obtained forrratio = 0, independly
of the value ofǫmax or of Ã. Notice however that, as in Paper
I, we consider in this article only stars without a hole, which
implies that we arbitrarily terminate this type of sequences at
rratio = 0, while the mass can probably become even larger for
other non-simply-connected configurations with same values
of ǫmax andÃ.

In Fig. 2, we illustrate some of our results by showing the
maximum rest massM0max as a function of the maximum en-
ergy densityǫmax for sequences starting from a non-rotating
configuration and with fixed degrees of differential rotation,
Ã = 0.5, 0.7 and 1. In other words, each curve represents the
upper limit on the rest-mass for a givenÃ. For those values,
lines marked bỹA = 0.5 and 0.7 contain maxima for sequences
classified as type A, while for̃A = 1.0 they are of type C.
We also displayed the results for static stars (lowest line), for
rigidly rotating stars at the mass-shedding limit (correspond-
ing to Ã = 0) and, for comparison, we included calculations by
Baumgarteet al. (2000) (dash-dotted lines). It can easily be
observed that the agreement with their results is very good for
small and moderate degrees of differential rotationÃ and/or
small values of the maximal energy densityǫmax. However,
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Figure 1. Rest mass versus the ratio of the polar to equatorial radius along sequences with fixed energy densityǫmax and close to the configuration with the
maximum mass in the sequence. The left panel corresponds to sequences of configurations with a modest degree of differential rotation (Ã = 0.5), classified
as type A configurations, while the right panel displays sequences forÃ = 1.0, which are of type C. For each sequence of type A, the configuration with the
maximum mass is marked with across and the terminal configuration (with the smallest value ofrratio) is at the mass-shedding limit. For type C sequences, we
arbitrarily end the sequence whenrratio = 0 (hence considering only stars with a spheroidal topologybut with a toroidal shape, see Fig. 3) and the maximum mass
was found to be reached for such configurations.
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Figure 2. Upper limits on the maximum rest massM0 versus the maximum
energy density (ǫmax) (or maximum enthalpyHmax) for differentially rotat-
ing neutron stars described by theΓ = 2 polytropic equation of state for three
fixed values ofÃ (0.5, 0.7 and 1.0). For comparison, the results for static stars
(TOV) and rigidly rotating stars at mass-shed limit (Ã = 0) are also shown.
Our results are displayed as solid lines, while the dash-dotted lines corre-
spond to calculations made by Baumgarteet al. (2000) for the same equation
of state. Following the classification introduced in Paper I, the sequences are
of type A for Ã = 0.5 or 0.7, and of type C for̃A = 1.0 (see Section 3 for more
detail).

for larger degrees of differential rotation or energy densities,
the discrepancy between their results and ours becomes more
and more visible. This illustrates that with the high level of
accuracy and of stability of our AKM-method based code (see
Appendix A), we were able to reach solutions with higher
masses than could be considered in previous works based on
other algorithms. For each fixed value of the degree of differ-
ential rotationÃ, we also indicated on Fig. 2 with a cross the
maximum allowed mass (the maximum of maxima).

To illustrate further the differences between the configura-

tions with the maximum allowed mass depending on the de-
gree of differential rotation, we show in Figure 3 their shape
for Ã = 0 (rigid rotation), 0.5 and 0.7 (both belonging to type A
sequences), but alsõA = 1.0 (a type C solution). Since for
rigid rotation the maximum mass is obtained at the Keplerian
limit, the surface of the star is not smooth, but exhibits cusps
along the equator. On the contrary, as soon asÃ 6= 0, the maxi-
mum mass corresponds to a configuration whose outer surface
is regular. As can be seen, the higherÃ, the further from the
shape with cusps the maximum mass configuration is. No-
tably, the configuration withÃ = 1.0 has a toroidal shape,
but belongs to spheroidal topology (being the last simply-
connected object in the type C sequence).

In Table 1, we summarize the properties of differentially ro-
tating stars with maximum allowed mass, forÃ, the degree of
differential rotation, ranging from 0 to 1.5. For type A solu-
tions, the higher̃A is, the higher are the allowed massM0max,
the compactness parameterM/Rcirc (whereM and Rcirc are
the gravitational mass and the circumferential stellar radius,
respectively), the angular momentumJ, the ratio between the
kinetic and the gravitational potential energiesT/W , and the
Kerr parameterJ/M2 (which are indicators of the onset of in-
stabilities for rotating stars, see Section 4). The higherÃ is,
the lower the maximum energy density is. Note that for con-
figurations with the maximum mass belonging to the type A
solution, the maximal density is always located in the stellar
center. In contrast, for type C sequences, the maximum al-
lowed massM0max is always obtained forrratio = 0 and it is a
decreasing function of̃A. For such configurations, its highest
value is obtained for the smallest possible value ofÃ compat-
ible with type C (̃A = Ãcrit), which is∼ 0.7 for theΓ = 2 poly-
tropic EOS. However, despite what could have been expected,
M0max is not a continuous function of̃A due to the existence
of the different types, and more specifically to the ambiguity
of the definition of the types for configurations withÃ = Ãcrit.
This ambiguity, as we shall see in the next subsection, is re-
lated to the fact that, as was shown in Paper I, there are in the
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Figure 3. Isocontours of the relativistic enthalpyH in meridional cross-sections of stars with the maximum allowed mass for rigidly rotating neutron stars at the
mass-shedding limit (̃A = 0, left upper panel) and three fixed degrees of differentialrotationÃ = 0.5 (right upper panel, type A),̃A = 0.7 (left lower panel, type A)
andÃ = 1.0 (right lower panel, type C).

solution space other types of sequences than those discussed
up to now (types A and C). Furthermore, as can already be
seen in Table 1, those types can be associated to even higher
masses than the most common type A.

3.2. Maximum mass for all types of solution

In Paper I, it was shown that, for fixedǫmax and moderate
degree of differential rotation, there are sequences of stars,
without a static limit, coexisting either with type A or type
C sequences. They belong to new types of sequences, called
type B andtype D respectively, and exist only thanks to dif-
ferential rotation. The four types of one-dimensional param-
eter sequences, denotedA, B, C andD, are illustrated in the
(rratio, β̃) plane for fixedǫmax = 0.12 by Fig. 4, on which it can
be seen6 that there are two threshold values ofA, respectively
ÃB andÃD, such that types A and B coexist forÃB < Ã < Ãcrit,
while types C and D are found wheñAD > Ã > Ãcrit. For a
givenǫmax, the minimal value of the degree of differential ro-
tation,ÃB, for which the type B exist, is the minimum of the
Ã(β̃) function for fixedrratio = 0, and similarlyÃD is the max-
imum of theÃ(rratio) function for fixedβ̃ = 0. On the other
hand, the curve with̃A = Ãcrit is a separatrix which divides the
plan in four domains. For a givenǫmax, the value ofÃcrit can
be determined thanks to the fact that theÃ(rratio, β̃) function

6 We remind the reader that, in such a plane, (rratio = 1, β̃ = 0.5) corre-
sponds to a spherical static star, while (rratio = 0, β̃ = 1) is the entrance in the
toroidal regim andβ̃ = 0 is associated to the mass-shedding limit.

possesses a saddle-point which belongs to the separatrix and
at which the four types coexist (see Paper I for details).

Having this in mind the two types of sequences without a
static limit, type B and type D, are defined as follows:

• Type B are one-dimensional sequences that start at the
mass-shedding limit (̃β = 0) but continously enter into
the toroidal regime (rratio → 0), when fixingǫmax and
Ã, but varying another suited parameter. As a conse-
quence, they are always characterized by small values
of rratio and, as type C sequences, in our study they ar-
bitrarily end at (rratio = 0, β̃ = 1). They are found for
ÃB ≤ Ã ≤ Ãcrit;

• Type D also start at the mass-shedding limit (β̃ = 0) but,
unexpectingly, they terminate there as well. As illus-
trated by Fig. 4, configurations of this type fill a smaller
part of the solution space and are less easily found than
those of all other types. They appear forÃD ≥ Ã ≥ Ãcrit.

The three threshold values of̃A are functions ofǫmax:
ÃB(ǫmax) < Ãcrit(ǫmax) < ÃD(ǫmax). Hence, another useful way
to depict the various domains of (co)existence of the types
of sequences consist in indicating them in the (ǫmax, Ã) plane.
This is done for theΓ = 2 EOS on Fig. 5, which shows that,
for all reasonable values ofǫmax, the solution space has more
or less the same structure.

Having understood the global structure of the solution
space, we were able to explore it in detail thanks to the high
level of flexibility of our Newton-Raphson based code (see
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Table 1
Properties of stars with maximal rest-massM0max for all types of sequences and forÃ in [0;1.5]. In addition to the mass, for
each configuration are displayed the ratio between the central and equatorial angular velocities (Ωc/Ωe), the ratio between

the kinetic and gravitational binding energies (T/|W |), the ratio between the polar and equatorial radii (rp/re), the maximum
enthalpyHmax, the maximum energy densityǫmax (with the central energy densityǫc in units ofǫmax), the angular

momentumJ, the Kerr parameterJ/M2 (with M the gravitational mass) and the compactness parameterM/Rcirc (with Rcirc
the circumferential radius). For more detail on the accuracy, see Appendix A.

TYPE Ã Ωc/Ωe M0max T/|W | rp/re Hmax ǫmax(ǫc/ǫmax) J J/M2 M/Rcirc

0.0 1.000 0.206941 0.0832 0.58479 0.43773 0.350 (1) 0.020170.5690 0.17373
0.1 1.027 0.207924 0.0856 0.57966 0.43702 0.349 (1) 0.020670.5773 0.17393
0.2 1.108 0.210921 0.0926 0.56477 0.43524 0.347 (1) 0.022150.6014 0.17448
0.3 1.240 0.216118 0.1042 0.54132 0.43151 0.343 (1) 0.024700.6389 0.17557
0.4 1.422 0.223975 0.1204 0.51059 0.42494 0.335 (1) 0.028490.6871 0.17759

TYPE A 0.5 1.657 0.235568 0.1419 0.47306 0.41433 0.323 (1) 0.03406 0.7440 0.18122
0.6 1.959 0.253800 0.1708 0.42686 0.39772 0.304 (1) 0.042860.8094 0.18834
0.7 2.507 0.295169 0.2222 0.35240 0.37329 0.306 (1) 0.062430.8921 0.21434
0.8 2.999 0.46319 0.2937 0.005 0.16416 0.097 (2.e-4) 0.17581.023 0.2504

TYPE C 0.9 3.382 0.43357 0.2854 0.002 0.16750 0.100 (2.e-5) 0.1526 1.008 0.2450
1.0 3.805 0.40851 0.2771 0.005 0.1720 0.103 (2.e-4) 0.1338 0.989 0.2415
1.5 6.420 0.32590 0.2379 0.01 0.1968 0.121 (6.e-4) 0.0783 0.897 0.2275

0.4 1.785 0.721 s 0.336 0.035 0.152 0.089 (0.016) 0.422 1.0780.270
TYPE B 0.5 2.006 0.639 s 0.335 0.114 0.145 0.084 (0.26) 0.340 1.082 0.246

0.6 2.223 0.571 s 0.331 0.144 0.140 0.081 (0.51) 0.277 1.088 0.222
0.7 2.443 0.510 s 0.324 0.164 0.140 0.081 (0.75) 0.225 1.091 0.201

TYPE D 0.8 2.6279 0.4485 0.3116 0.1825 0.14242 0.08239 (0.944) 0.178 1.096 0.177

1

1

0.25

0.25

0.5

0.5

0.75

0.75

rp/re

β̃

Ã = 0.0

Ã = 0.4

Ã = 0.7

Ãcrit

Ã = 0.8

Ã = 1.0

type C

type A

type D

type B

Figure 4. Typical structure of the solution space illustrating, in the (rratio, β̃)
plane, the various types of sequences for several values of the degree of differ-
ential rotationÃ. The curves show the dependency between the shedding pa-
rameterβ̃ and the ratio between polar and equatorial radiirratio for Γ = 2 poly-
tropic stars with fixed maximal energy densityǫmax = 0.12 (Hmax = 0.2). The
bold curve corresponds to the separatrix sequence withÃ = Ãcrit = 0.75904,
which divides the diagram in 4 regions containing sequencesof types: A (a
lower right corner), B (a lower left corner), C (above separatrix) and D (be-
tween types A and B).

Appendix A), which allows to fix or vary any parameter. As
can be guessed from Fig. 4, the shedding-parameterβ̃ is well
suited for finding type B sequences with fixedÃ and ǫmax,
at least when we are not too close to the entrance into the
toroidal regim (rratio = 0, β̃ = 1). Hence, we looked for the
maximum mass of this type of sequences by following such
curves in the solution space. On Fig. 6, we show typical re-
sults obtained when studying the rest massM0 as a function
of β̃. As explained earlier, all lines start at the mass-shedding
limit ( β̃ = 0) and end when entering into the toroidal regim
(β̃ = 1). It was found that for type B, the configuration with
maximum mass was always at one or the other of these two

0 0.1 0.2 0.3 0.4 0.5
ε

max

0

0.2

0.4

0.6

0.8

1

1.2

~
 

A
  

type C

types C and  D

types A and B

type A

Figure 5. Regions of existence of A, B, C and D types of differentially ro-
tating neutron stars sequences in the plane (Ã,ǫmax). The central (red) curve
indicates the critical valuẽAcrit(ǫmax) which corresponds to the separatrix, on
which all types (A, B, C and D) of solutions coexist. The greendashed line
and the blue dash-dotted line correspond to the lower limit of existence of
type B, ÃB, and to the upper limit,̃AD, of existence of type D, respectively.
For Ã < ÃB(ǫmax) or Ã > ÃD(ǫmax), only one type remains, respectively A or
C.

positions in the solution space (which can easily be seen for
the examples depicted on Fig. 6). More precisely, when the
maximum energy densityǫmax was sufficiently low, the con-
figuration with maximum mass was at the Keplerian limit,
while with increasingǫmax it jumped to (rratio = 0, β̃ = 1). One
example of the shape of a star belonging to a type B sequence
at the Keplerian limit and withrratio ∼ 0 was shown in Fig. 1
of Paper I. It illustrates that the stability of our numerical code
allows calculations of extreme configurations simultaneously
strongly pinched and oblate.

Before commenting further our results, and especially the
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Figure 6. Rest massM0 as a function ofβ̃ along sequences oftype B with
fixed ǫmax (and for all of themÃ = 0.8).
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Figure 7. Rest massM0 as a function ofβ̃ along sequences oftype D with
fixed ǫmax (and for all of themÃ = 0.8).

values of the maximum mass obtained, we shall mention that
a quite similar procedure was applied to look for the maxi-
mum mass of type D sequences. It led to typical results as
those shown by Fig. 7, which illustrates that the maximum
mass was always reached for one of the two mass-shedding
configurations belonging to the sequence (more precisely the
mass was always for the one with the smallestrratio).

As was already explained, the structure of the solution
space is such that, for fixedǫmax andÃ, there can be several
types of configurations that exist simultaneously. It means
that there is not always a unique solution to the system of
equations for given values of the three parameters needed to
calculate one, depending on what are the chosen parameters.
More precisely, we have seen (Fig. 5) that there is some over-
lap between the domains of existence of types A and B, but
also between C and D, if one fixesǫmax and variesÃ. Conse-
quently, when looking for the maximum mass for fixedǫmax

andÃ, as illustrated by curves similar to those on Fig. 2, all
types of sequences have to be taking into account and one

0 0.1 0.2 0.3 0.4 0.5
ε

max

0

0.1

0.2

0.3
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0.5

M
0m

ax

TOV

~ 
Α= 0

~ 
Α=0.7  (type A)

~ 
Α=0.7  (type B)

Figure 8. Maximum rest massM0max as a function of the maximum energy
densityǫmax for Ã = 0.7. Curves associated to type A and type B sequences
are represented. We also plotted the result for static stars, for rigid rota-
tion (Ã = 0), and the data of Baumgarteet al. (2000) (dash-dotted line), as in
Fig. 2. One easily observes that stars of type B can be much more massive
than those of type A.

should not only consider configurations reached from a static
limit. As a matter of fact, when two neutron stars merge,
which is one of the situations of interest for studies of maxi-
mum masses, a naive expectation could even be that the shape
of the material remnant would, at first, be closer to that of a
more toroidal type B configuration than to the more spherical
shape of a type A star.

On Fig. 8, we come back to some of the results already
shown on Fig. 2 and display the maximum rest massM0max as
a function of the maximum energy densityǫmax for sequences
with a fixed degree of differential rotation,Ã = 0.7 [to make
easier the comparison we kept the curves for rigid rotation,
for static stars as well as the dash-dotted line associated to the
calculations of Baumgarteet al. (2000)]. However, this time,
in addition to the results obtained for type A sequences, we
also included those for type B (whose existence forÃ = 0.7 is
proven by Figs. 4 and 5).

From this figure, one concludes that type B stars can sustain
a much higher mass than the more common type A configura-
tions. If one compares with rigid rotation, the increase of the
maximum mass can even be as large as around 150% (more
than 0.5 compared to∼ 0.2). The same kind of conclusions
arises from a careful study of the solution space for all types.
For instance, Fig. 9 shows the maximum rest massM0max ver-
sus the maximum energy densityǫmax for Ã = 0.8 stars. As
can be noticed from Fig. 5, this value of the degree of dif-
ferential rotationÃ is one of the few for which all 4 types of
solution can exist. More precisely, for low values ofǫmax, one
hasÃcrit(ǫmax) > 0.8, so that the configurations are of types A
and B, while for large values ofǫmax, Ãcrit(ǫmax) < 0.8, and the
configurations are of types C and D, the transition being for
ǫmax∼ 0.08 such that̃Acrit = 0.8 (see Fig. 5).

One of the important conclusions that can be drawn from
Fig. 9 is that types C and D stars also give rise to masses much
larger than those of rigidly rotating stars, even for reasonable
degree of differential rotation and maximum energy density.
The precise values that we obtained for the highest increaseof
the maximum rest mass (for givenÃ) within sequences of type
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Figure 9. Maximum rest massM0max as a function of the maximum energy
densityǫmax for Ã = 0.8 and all types of solutions.

C and D are presented in Table 1, together with other physical
properties of those configurations that we shall describe in
Section 4. Due to the quite small domain of existence of type
D, be it in the (ǫmax, Ã) plane (visible on Fig. 5) or in a (rratio, β̃)
plane with fixedǫmax and Ã (visible on Fig. 4), we included
only one typical value for this type. Finally, we represented
the highest increase of the maximum rest mass with respect
to static configurations for all types of sequences on Fig. 10,
in which we also displayed the results of Lyfordet al. (2003)
for comparison.

To sum up our results, we found that the maximum mass of
differentially rotating neutron stars depends on both the de-
gree of differential rotation and the type of solution. From
Fig. 10, one deduces that the maximum mass is an increas-
ing function ofÃ for type A solution (associated to a low and
modest degree of differential rotation), and a decreasing func-
tion for types B and C. Furthermore, configurations from the
newly discovered types B and C can possess masses much
larger than those of the type A. More precisely, the highest in-
crease of the maximal mass, around 4 times the maximal static
mass, was obtained for a modest degree of differential rotation
and for configurations belonging to type B sequences which
were not taken into account in other studies, mainly due to nu-
merical limitations. Stars of type B sequences are indeed very
oblate objects, with toroidal shapes such thatrratio<0.25. The
agreement of our results with those of Lyfordet al. (2003) is
very good for type A solutions, and good for a modest degree
of differential rotation,Ã = 0.8−1.0, for type C solutions. Our
calculations of the maximum allowed mass are consequently
the first which take into account all types of solutions. How-
ever, the obtained value of the maximum mass is much higher
than the mass of the heaviest stars known up to now. It is natu-
rally an open question whether the considered configurations
could be stabilized by differential rotation.

4. ROTATIONAL PROPERTIES

For astrophysical purposes, the question of the maximal
mass of differentially rotating neutron stars is strongly re-
lated to that of their stability. Even without doing dynamical
simulations or stability analysis, some basic conclusionscan
be drawn from the study of rotational properties of the stars,
some of which are listed in Table 1. In this Section, we shall
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Figure 10. Highest increase of the maximum rest-mass with respect to static
configurations as a function of̃A for all types of sequences. As in Table 1,
only one value is given for type D due to the narrowness of its domain of
existence (see text for more detail). For comparison, we also display the
results of Lyfordet al. (2003).

focus on some on those properties, restricting the discussion
to

• the comparison of the different types of configurations
that all co-exist ifÃ is fixed atÃ ≡ 0.8 (as can be seen
on Figure 5), a value of the degree of differential rota-
tion which is an intermediate one;

• their evolution for stars with maximal mass whenÃ
changes (see Table 1).

4.1. Angular momentum

The most obvious quantity to start with is angular mo-
mentumJ, which is depicted on Figure 11 as a function of
the maximal energy densityǫmax for stars withÃ = 0.8. A
straightforward remark to do is that for types A and C the
minimal value ofJ for fixedǫmax is 0, while it is not for types
B and D, which results from the fact that types A and C admit
non-rotating limits while B and D do not (see Paper I or
Figure 4). Then, one can notice that for a given value ofǫmax,
the angular momentum stored in a type B star is always larger
than in a type A star, as was already the case for the mass.
Again, in agreement with what was the situation for the mass,
the angular momentum of a type C star of fixed maximal en-
ergy density can be both higher or lower than for a type D star.

If one no longer fixes the maximal energy density, one no-
tices that the values taken by the angular momentum can be
much higher for types B, C or D stars than for type A. Since
such high values are reached for very small ratios of the radii
and possibly for stars that don’t have a non-rotating limit,this
implies that calculations made only by accelerating a TOV
star shall miss most of those configurations. Also, one can
see that when the maximal energy density is close to the tran-
sition value which corresponds to the separatrix (see PaperI,
Section 3 and Figure 5), there seems to be a huge gap in the
maximal angular momentum for the type A star of highest
maximal energy density and for the type C star of smallest
maximal energy density, both being equal toεmax,S0.8 such
that Ãcrit(εmax,S0.8) = 0.8, see Fig. 5. However, as we briefly
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discussed in Section 3, there is here an ambiguity in the def-
inition of the types linked to the fact that for configurations
exactly on the separatrix, type A and C share a branch: on Fig-
ure 4, it is the right one among the two which are going from
the point of intersection of the separatrix lines (in bold) to the
mass-shedding limit (the horizontal axis defined byβ̃ = 0).

Then, one shall notice that for stars of type A and D (but not
B or C), the configurations with the highest value ofJ are also
those with the maximal mass, so that they are (see Section 3):

• for type A: close to but not at the mass-shedding limit
(exception done of the case of rigid rotation);

• for type D: for the smallest value ofrrat among the two
mass-shedding limit configurations (see Figure 7).

As far as types B and C are concerned, the situation is
slightly different, maybe due to the fact that those types in-
clude stars with a vanishing polar radius (since we decided
not to study stars with a hole) which have complicated inter-
nal distributions of physical quantities. More specifically, we
observed that

• for type B: the maximalJ is found at the mass-shedding
limit, which is also the maximal mass for maximal en-
ergy densities not too close to the transition value (see
Section 3). On Fig. 11, this explained the continuity
between the maximalJ of types B and D whenǫmax in-
creases. Notice that on this figure, the configurations of
maximal mass for type B are indicated by a dotted-line;

• for type C: configurations with maximalJ are very
close to those of maximal mass (at vanishing polar ra-
dius, see Section 3), but they do not exactly coincide
with them.

Finally, if one comes back to Table 1 to have a glimpse
at the influence ofÃ on J, one can see that increasing the
degree of differential rotation (i.e. increasingÃ) allows higher
maximal values ofJ only for stars of type A. For types B and
C, it is the opposite, as was already the case with the maximal
mass (see Section 3).

4.2. Kinetic energy to gravitational energy ratio (T/|W |)
and instabilities

For observational purposes, a quantity which is more
directly interesting than the angular momentum isT/|W |,
the ratio between the kinetic (rotational) energyT and the
gravitational binding energyW . This ratio indeed plays the
role of an order parameter (Bertin & Radicati 1976) and is
a good indicator of the possible onset of instabilities that
can be source of gravitational waves (Andersson 2003). It is
displayed on Fig. 12 for stars with̃A ≡ 0.8.

This figure shows many similarities with the figure for an-
gular momentumJ (Fig. 11), for instance in the facts that

• type B allows for higher values than type A;

• for types A and C the minimal value if 0, while it is not
for types B and D;

• there seems to be a discontinuity of the maximal value
when one goes from type A to type C, which is again
due to the ambiguity in the definition of the types on the
separatrix;

Figure 11. Ranges of angular momentum as a function of the maximal en-
ergy densityǫmax for types A, B, C and D withÃ = 0.8. For types A and D,
the upper limit always corresponds to the configuration withmaximum rest
mass. For type C, they nearly coincide, while for type B, it isthe case at low
ǫmax, but not when one approaches the separatrix. In such conditions, the
maximal angular momentum of type B stars is found for the mass-shedding
limit whereas the configurations of maximal mass are indicated by a dotted-
line on this figure (see text for more detail).

• for types A and D, the maximal value ofT/|W | is
obtained for the configuration with maximal mass,
whereas for type C they almost coincide and for type
B it happens only for the lowestǫmax.

However, one shall also notice some changes with respect
to the situation forJ:

• the relative difference between the possible values for
type A and for other types is not as large forT/|W | as
it was forJ;

• type C does not allow larger values than type D;

• for all types, the maximal value depends much less on
ǫmax than it did forJ.

As far as the influence of the degree of differential rotation
is concerned, Table 1 tells us that in a way similar to what
happens forJ and M0, the maximal value ofT/|W | is an
increasing function of this degree (i.e. of Ã) only for stars
of type A, and it is a decreasing one for types B and C. Of
course, this table also confirms that much higher values of
T/|W | can be reached for types other than A.

Indeed, another result illustrated by Fig. 12 is that for
all configurations of types B and D,T/|W | is at least
equal to 0.2, which leads to the legitimate question of the
(dynamical) stability of such stars [see Shibataet al. (2000);
Andersson (2003)]. The study of this stability is beyond
the scope of this work since it requires making dynamical
simulations (Baumgarteet al. 2000; Shibataet al. 2000) or
analysis of perturbations, but refering to previous studies,
one can expect such dynamical instabilities as the so-called
bar-mode instability. Furthermore, as we are dealing here
with differentially rotating stars, another kind of instability
could be triggered, the so-called lowT/|W | instability [see
for instance Krügeret al. (2010) and references therein]. As a
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Figure 12. Ranges of the ratio between the kinetic and the potential energies
as a function of the maximal energy densityǫmax for types A, B, C and D
with Ã = 0.8. Notice that for type B and the highestǫmax, configurations of
maximalT/|W | and maximal mass do not coincide. The latter appear in this
figure as a dotted-line. Again, there is no gap between the lines of maxima
for types B and D since on the separatrix they coincide at the mass-shedding
limit of lowest rrat (see text for more detail).

Figure 13. Ranges of the ratio between the central and equatorial angular
velocitiesΩc/Ωe as a function of the maximal energy densityǫmax for types
A, B, C and D withÃ = 0.8.

relation between the later and the appearance of a co-rotation
point has been suggested [see Passamonti & Andersson
(2015) and references therein], an easy way to get some more
information on the possible stability of the configurations
under study here is by depicting the ratio between central and
equatorial angular velocities,Ωc/Ωe, as is done on Fig. 13 for
stars withÃ = 0.8.

Again, the picture is quite similar to the previous ones, with

• type B which corresponds to higher values than type A;

• types A and C which have 0 as a minimal value whereas
types B and D do not;

• an apparent discontinuity of the maximal value when
one goes from type A to type C, which is still due to the
ambiguity in the definition of the types on the separa-
trix.

However, the ratioΩc/Ωe differs from the other quanti-
ties by the fact that, for types B and D, its maximal value
is obtained for the configuration with maximal mass, while
for types A and C they only almost coincide. Notice that the
value of this ratio for the configuration of maximal mass is so
close to its maximal value that we do not indicate it on Fig. 13.

As far as the quantityΩc/Ωe itself is concerned, this fig-
ure shows that types B, C and D (and especially type C)
allow large values (up to 5 for̃A = 0.8, a moderate degree
of differential rotation), which implies a large window of
possible corotation for instabilities such as those studied in
Krügeret al. (2010) to be triggered. As we stated earlier, we
shall not enter more into the detail of this topic, and we just
notice to conclude that Table 1 displays, as one can expect,
a strong and positive correlation between the value ofΩc/Ωe

for the star with maximal mass and the value ofÃ.

4.3. Kerr parameter J/M2

To conclude our brief study of rotational quantities for stars
with maximal mass or with a rotation profile characterized by
Ã = 0.8, we shall look at the so-called Kerr parameterJ/M2

whose value cannot be larger than 1 for a rotating black hole
in general relativity. Indeed, it has been suggested [see for
instance Giacomazzoet al. (2011)] that supra-Kerrian stars
whose collapse would lead to a naked singularity are some-
how stabilized so that the cosmic censorship conjecture is re-
spected. As previously done for other rotational quantities,
we picture on Fig. 14 the Kerr parameterJ/M2 as a function
of ǫmax for stars from all types and with̃A = 0.8, and we show
this parameter for all stars with maximal mass but various val-
ues ofÃ and types in Table 1.

From the table or the figure, it can easily be checked that as
soon as the density is large enough, no supra-Kerrian config-
uration exist, a conclusion quite similar to what was found in
Giacomazzoet al. (2011). More precisely, for types A, B and
C, the Kerr parameter is a decreasing function ofǫmax. Addi-
tionally, we observe from Table 1 that for stars with maximal
mass,J/M2 is an increasing function of the degree of differ-
ential rotation (̃A) for types A and B, whereas it is a decreas-
ing one for type C. Furthermore, the Kerr parameter is always
larger than 1 for type B stars and it can be so for type D stars
whose maximal density is not too large (such as the star with
maximal mass displayed in Table 1). Although we previously
saw that quantities such asT/|W | or Ωc/Ωe strongly suggest
that they are not stable, the fact that the Kerr parameter is
larger than 1 for such configurations could be a possible indi-
cation of their quasi-stability. Indeed, the dynamical simula-
tions of Giacomazzoet al. (2011) showed that supra-Kerrian
stars seem to be stabilized by differential rotation. If other
conclusions from Giacomazzoet al. (2011) are correct, the fi-
nal collapse of such stars would be associated with the excita-
tion of various modes, making them very interesting sources
of gravitational waves. Nevertheless, as was already stated, to
be properly dealt with, this issue would require some dynam-
ical study or some perturbative analysis which are far beyond
the scope of the current work.

5. DISCUSSION OF THE RESULTS AND CONCLUSION
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Figure 14. Ranges of the ratio between the angular momentum and the
square of the gravitational mass,J/M2, the so-called Kerr parameter which
cannot be larger than 1 (limit indicated by the black horizontal line) for a ro-
tating black hole in general relativity. It is displayed here as a function of the
maximal energy densityǫmax for types A, B, C and D withÃ = 0.8.

Using a highly accurate spectral code based on the Newton-
Raphson scheme, we calculated configurations of relativistic
differentially rotating neutron stars modeled asΓ = 2 poly-
trops for broad ranges of maximal densities and of the degree
of differential rotation. We were able to fully explore the so-
lution space for stars with a rotation profile described by the
law proposed in Komatsuet al. (1989), although we consid-
ered only models with spheroidal topology (without a hole).

For the first time, the maximum mass and various other as-
trophysical quantities were calculated for all types of differ-
entially rotating neutron stars, as defined in Paper I. The max-
imum mass of differentially rotating neutron stars was shown
to depend not only on the degree of differential rotation but
also on the type of the solution. Its value is an increasing
function of the degree of differential rotation for type A solu-
tions (associated to a low or to a modest degree of differential
rotation) and a decreasing function for types B (with a modest
degree of differential rotation) and C (with a modest or a high
degree of differential rotation). The highest increase of the
maximal mass, 3-4 times the maximal non-rotating mass, is
obtained for intermediate degrees of differential rotation, indi-
cating that the corresponding configurations could be relevant
in some astrophysical scenarios. Those configurations belong
to sequences of type B which were not taken into account
in previous studies mainly due to numerical difficulties. In
addition, the thorough investigation performed in the present
article allowed to understand the partial results obtainedwith
other codes (Baumgarteet al. 2000; Lyfordet al. 2003) and
to show that the maximum possible mass of a differentially
rotating neutron star could be much higher than previously
thought, even for astrophysically reasonable configurations.

In order to try to go a step further in deciding whether con-
figurations of the new types have pertinence in actual situa-
tions, we performed a rough analysis of their rotational pa-
rameters, such as their angular momentum and other quan-
tities linked to the possible appearance of instabilities.We
observed that the ratio between the kinetic and potential ener-
gies was indeed quite large for many newly discovered con-
figurations, but we also noticed that so is their Kerr-parameter

(always higher than 1 for stars with the maximum mass be-
longing to types B and D and for some of type C), which
could imply that they are somehow stabilized. However, the
definitive answer to that question has to come from other anal-
ysis, be they perturbative or fully dynamical. A few hydrody-
namical studies (Baumgarteet al. 2000; Shibataet al. 2000;
Giacomazzoet al. 2011) have already shown that supra-Kerr
stellar models seem dynamically stable but are subject to var-
ious secular instabilities leading to the emission of gravita-
tional waves. Another complementary approach would natu-
rally be to use the configurations we have calculated as initial
data to perform dynamical evolutions of differentially rotat-
ing neutron stars and to study the stability criteria for such
objects.

To be of physical interest, the conclusions drawn in our
study should as well be supported by further investigations
with more relatistic descriptions of the microphysics, such as
the equation of state. In Studzińskaet al. (2016), we present
results concerning the influence of the stiffness of a polytropic
equation of state on the various types of configurations and
on their properties to examine how robust our results are. In
other articles, we shall study the maximum mass of strange
stars (Szkudlareket al. 2016) and analyse in detail the rota-
tional properties of neutron stars described by realistic EOSs.
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APPENDIX

THE NUMERICAL SCHEME

As in Paper I (Ansorget al. 2009), the numerical calculations are done using a pseudospectral collocation point method that
utilizes two domains: (i) a domain which covers the fluid’s interior, and (ii) a spatially compactified domain describingthe fluid’s
exterior. In order to avoid Gibbs phenomena, we choose the common boundary between the two domains to coincide with the
surface shape of the fluid configuration. This shape is not known a priori but forms part of the elliptic ‘free’ boundary value
problem to be solved. Each of the two subdomains is characterized by a mapping

̺2 = ̺2
k(s, t) , z2 = z2

k(s, t) , (s, t) ∈ [0,1]2 (A1)

where̺ and z are the coordinates used in the metric (see Paper I) and wherek labels the subdomains (k ∈ {0;1}). Here we
have used the fact that the solutions are axially and equatorially symmetric from which it follows that the metric coefficients are
functions of the coordinate squares,̺2 andz2.

For the coordinate transformation
(s, t) 7→ (̺2,z2)

we take care of the fluid’s unknown surface shape by means of a one-dimensional functionG,

G : [0,1] → R .

In particular we write:

• Exterior subdomain,k = 0:

̺2
0(s, t) = t

[

r2
e − r2

p + ξ2(s)
]

(A2)

z2
0(s, t) = (1− t)

[

ξ2(s) − r2
p

]

+ G(t) − r2
et (A3)

with

ξ(s) = rp + re
1−σ(s)
σ(s)

, (A4)

σ(s) = 1−
sinh[(1− s) logεs]

sinh(logεs)
, (A5)

G(t = 0) =r2
p , (A6)

G(t = 1) =r2
e . (A7)

Here,rp andre describe the polar and equatorial radii respectively.

The boundaries of the exterior domain are described by:

s = 0 : Spatial infinity,
√

̺2 + z2 →∞ (A8)
s = 1 : Surface of the fluid, given by : (A9)

{

(̺2,z2) =
(

r2
et, [G(t) − r2

et]
)

, t ∈ [0,1]
}

(A10)
t = 0 : Rotation axis,̺ = 0 (A11)
t = 1 : Equatorial plane,z = 0 (A12)

• Interior subdomain,k = 1:

̺2
1(s, t) = r2

et (A13)

z2
1(s, t) = s

[

G(t) − r2
et
]

. (A14)

http://www.livingreviews.org/lrr-2003-3~
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Figure 15. Example for mappings of interior and exterior domains, see (A1). The coordinate transformations being chosen are specifically suited to extremely
flattened configurations.

The boundaries of the interior domain are described by:

s = 0 : Equatorial plane,z = 0 (A15)
s = 1 : Surface of the fluid, as in (A9) (A16)
t = 0 : Rotation axis,̺ = 0 (A17)
t = 1 : Equator,̺ = re,z = 0 (A18)

The mapping of the exterior subdomain is chosen to resemble oblate spheroidal coordinates in which the entire class of Maclaurin
spheroids exhibits a rapid spectral convergence rate. For general highly flattened relativistic stars we find, however,that the
spectral convergence rate can be improved considerably by refining the exterior spectral mesh in the vicinity of the fluid’s surface.
We achieve this by rescaling the coordinates and adjusting the free parameterεs introduced in Eq (A5). For an illustrative example
see Fig. 15.

In our pseudospectral collocation point scheme, all functionsUκ (κ = 0. . .neq− 1) to be determined by the free boundary value
problem are considered at specific gridpoints (sk,i; tk, j) in the subdomainsk ∈ {0;1}. These gridpoints are given through:

sk,i = sin2

(

πi

2(n(s)
k − 1)

)

; i = 0. . .n(s)
k − 1 (A19)

tk, j = sin2

(

π j

2(n(t)
k − 1)

)

; j = 0. . .n(t)
k − 1 (A20)

The integersn(s)
k andn(t)

k describe the number of gridpoints in the domaink with respect to thes- andt-directions (i.e. the spectral
expansion orders). Whilen(s)

0 may be different fromn(s)
1 , we assume the same numbersn(t)

0 = n(t)
1 of gridpoints at the common

domain boundary.
We collect all function values

Uκ
k,i j = Uκ(sk,i, tk, j) (A21)

as well as the values of the unknown surface functionG,G j = G(t1, j), in order to build up a vectorf. In addition, this vector is
filled with two physical parameters that characterize, for agiven equation of state, the configuration. In particular, we choose
them to beVc [value ofV at the center, see definition (9)] andΩc [see definitions (5) or (6)]. Note that it is sometimes possible to
find more than one solution to a given pair of parameters.

The collection of elliptic equations valid in the subdomains, transition conditions at the common domain boundary, thevan-
ishing pressure boundary condition at the fluid’s surface and certain parameter relations that one wishes to fulfill, yield a discrete
non-linear system of the form

F(n)(f(n)) = 0 (A22)

wheren stands for the collection of alln(s)
k andn(t)

k ,

n = {(n(s)
k ,n(t)

k );k = 0;1} .



14

The dimension of this system is given by

ntotal = neq

1
∑

k=0

n(s)
k n(t)

k + nG + npar, (A23)

with nG = n(t)
0 andnpar= 2. In particular, the transition conditions require theUκ to be continuous and to possess continuous normal

derivatives. At domain boundaries which correspond to portions of the rotation axis or the equatorial plane, we requireregularity
conditions, which follow from the elliptic equations when specialized to this boundary. Via the integrated Euler equation (8), the
vanishing pressure boundary condition restricts the potentials at the fluid’s surface. It addsnG equations to the system. Finally,
we may include specific parameter relations that we wish to besatisfied. For example, we could just prescribe certain values for
the physical parameters contained inf. However, we also might wish to prescribe other parameters instead, say rest massM0 and
angular momentumJ of the objects. For this reason we include thenpar physical parameters into the vectorf and add the specific
parameter relations to the system.

The solutionf(n) of the discrete algebraic system (A22) describes the spectral approximation of the solution to the free boundary
value problem. We find the vectorf(n) using a Newton-Raphson scheme,

f(n) = lim
m→∞

f(n)
m , (A24)

f(n)
m+1 = f(n)

m −
[

J(n)(f(n)
m )
]−1

F(n)
(

f(n)
m

)

, (A25)

where the Jacobian matrix is given by

J(n) =
∂F(n)

∂f(n)
. (A26)

Note that for the convergence of the scheme a ‘good’ initial guessf(n)
0 is necessary which we provide through a known nearby

function.
The linear step inside the Newton-Raphson solver,i.e. the solution of

J(n) · δ f = −F(n) ,

is performed with the preconditioned ‘Biconjugate Gradient Stabilized (Bi-CGSTAB)’ method (Barrettet al. 1993). A good
convergence of this method requires a so-called preconditioning, which we construct in complete analogy to Ansorget al. (2004)
and Ansorg (2005) through a second or fourth order finite difference representation of the Jacobian matrix of the non-linear
system.

For most configurations considered in this article, numerical solutions with extremely high accuracy were obtained with a mod-
erate computational effort. This is illustrated by Fig. 16 which displays the accuracy reached for some astrophysical parameters,
e.g. the baryon mass, the circumferencial radius and the angular momentum, for a typical example of a not too oblate (rratio = 0.36)
type A star with a moderate degree of differential rotation (Ã = 0.7) and a modest maximum enthalpy (Hmax = Hc = 0.38). More
precisely, on this figure, are represented the relative differences between thenth spectral approximantSn of all these quantities
(denotedS) and their approximant of order 36, as functions of the number n of spectral points. In the case of more extreme
configurations (e.g. close to the Keplerian limit,β̃ = 0, or to the entrance in the toroidal regime,rratio = 0), the number of points
needed to get a similar accuracy was larger, but the code alsoappeared able to perform the calculations. For subcriticalconfigu-
rations,n = 24 was sufficient, while for extreme ones, up ton = 34 was sometime necessary. On Fig. 16 can be observed that the
accuracy reached for such resolutions is of the order of 10−10− 10−7.

To conclude this Appendix on the numerical scheme, we shall briefly describe the method used and the precision reached
to identify differentially rotating neutron stars with maximum mass among all types of solutions, which was the main goal of
this article. Fig. 17 illustrates the precision and the method in the (rratio,Hmax) plane for type A stars with̃A = 0.7. Once a
rough estimation of the position in the (rratio,Hmax) plane was obtained (after building sequences as describedin the main text
of the article), the code was used to find the value ofM0 for each configuration associated to (rratio i,Hmax j), wherei = 0,1.., imax
and j = 0,1.., jmax, with typical values ofimax and jmax in the range 5− 15. Then the maximum mass was determined as the
extremum of theM0(rratio,Hmax) function in that region of the plane, the corresponding configuration being also identify. Notice
that when looking for the extremum of a smooth function such as M0(rratio,Hmax), a spectral algorithm could also be used. The
accuracy reached for thenth spectral approximant ofM0max is shown on the right panel of Fig. 17, while the left panel presents
the correspondingrratio andHmax. All values were obtained forimax = jmax = 10.



15

16 18 20 22 24 26 28 30 32 34
n

1e-10

1e-08

1e-06

0.0001

|1
-S

n/S
36

|

S
n
=M

0,n

S
n
=J

n

S
n
=R

circ,n

Figure 16. Illustration of the geometrical convergence rate for the rest massM0, the angular momentumJ and the circumferential radiusRcirc of a differentially
rotating neutron star described by a polytropic EOS withΓ = 2. This configuration is of type A and characterized by a degree of differential rotatioñA = 0.7, a ratio
of the coordinate radiirratio = 0.36 and a maximal enthalyHmax = 0.38. For all three quantities, the plot displays the accuracyof thenth spectral approximationSn,
with heren = n(s)
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Figure 17. Left panel: Illustration of the method used and of the precision reached when localizing the configuration with maximum mass for type A sequences
with Ã = 0.7 (as shown in Table 1). Right panel: geometrical convergence rate for the maximum rest massM0 and for the corresponding maximum enthalpyHmax
and ratio between the polar and equatorial radiirratio. More specifically, the plot displays the relative accuracyof thenth spectral approximations with respect to
the 34th.


