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Abstract

We apply Fokker-Planck equation to investigate processes responsible for turbulence in space plasma.
In our previous studies, we have shown that turbulence in the inertial range of hydromagnetic scales
exhibits Markov properties [Strumik & Macek(2008a), Strumik & Macek(2008b)]. We have extended this
statistical approach on much smaller scales, where kinetic theory should be applied. Namely, we have
presented the results of the statistical analysis of magnetic field fluctuations in the Earth’s magnetosheath
based on the Magnetospheric Multiscale (MMS) mission [Macek et al.(2023)]. Here we compare the
characteristics of turbulence behind the bow shock, inside the magnetosheath, and near the magneto-
pause [Macek & Wójcik(2023)]. We prove that the second order approximation of the Fokker-Planck
equation leads to kappa distribution of the probability density function provided that the first Kramers-
Moyal coefficient is linear and the second term is quadratic, describing drift and diffusion correspondingly,
which is a generalization of the Ornstein-Uhlenbeck process. In this case the power-law distributions
are recovered. For some moderate scales we have the kappa distributions described by various peaked
shapes with heavy tails. In particular, for large values of the kappa parameter this is reduced to the normal
Gaussian distribution. The obtained results on kinetic scales could be important for a better understanding
of the physical mechanism governing turbulent systems in laboratory and space.
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Importance of Turbulence

Turbulence is a complex phenomenon that notwithstanding progress in
magnetohydrodynamic simulations is still a challenge for natural sciences
[Frisch(1995)], because physical mechanisms responsible for turbulence
cascade are not clear [Biskamp(2003)]. Fortunately, collisionless solar wind
plasma can be considered natural laboratories for investigating this complex
dynamical system [Bruno & Carbone(2016)].
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MMS Observations of Turbulence on Kinetic
Scales

• We have confirmed clear breakpoints in the magnetic energy spectra, which
occurs near the ion gyrofrequencies behind the bow shock, inside the
magnetosheath, and before leaving the magnetosheath.

• We have also observed that the spectrum steepens at these points to power
exponents in the kinetic range from -5/2 to -11/2 for the magnetic field data
of the highest resolution available within the MMS mission.

• Now we present the results of our analysis, where we check whether the
solutions of the Fokker-Planck equation are consistent with experimental
probability density functions (PDFs).
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List of selected MMS 1 interval samples
(hh.min:ss)

Case Resolution Time (y.m.d) Loc. Begin End θBn(◦) MA β Mms

(a) High 2015.12.28 BS 01.48:04 01.52:59 35.8 ± 7 19.3 4.5 8.7
(b) Low 2015.12.28 SH 06.19:00 09.45:59 46.6 ± 21 19.9 4.9 8.7
(c) High 2016.12.27 MP 11.30:24 11.32:13 32.0 ± 13 12.8 2.2 7.5
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*
MMS 1 spacecraft trajectory in the magnetosheath: (a) behind the bow shock, (b) inside the magnetosheath, and (c) near the

magnetopause, from (Macek et al. 2018).
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Characteristic plasma parameters values

Parameters case (a)
BS

case (b)
SH

case (c)
MP

< B > [nT] 18.85 18.23 21.75
fci [Hz] 0.25 0.24 0.29
fce [Hz] 528 510 609
Ti [eV] 420 392 574
Te [eV] 46 43 68
rLi [km] 119 119 120.5
rLe [km] 0.86 0.85 0.9
λi [km] 46.65 41 61
λe [km] 1.05 0.94 1.35
fλi [Hz] 0.55 0.41 0.45
fλe [Hz] 24.5 18.1 20.1
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Figure 1: Time series of the magnetic field strength B = |B| of the MMS data with the corresponding

spectra in the magnetosheath (a) near the bow shock (BS), (b) inside the magnetosheath (SH), and (c) near the

magnetopause (MP) plotted with three different colors. Average ion gyrofrequency ( fci), as well as a characteristic

Taylor’s shifted frequencies for ions ( fλi) and electrons ( fλe) are shown by the dashed, dashed-dotted, and dotted

lines, respectively, see Table 1 of Ref. (Macek et al. 2018).
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Methods of Data Analysis

We use the increments of a characteristic magnetic field B = |B| describing
a turbulent system at each time t and a given scale τ

bτ(t) = B(t + τ)−B(t). (1)

We assume that the fluctuations bτ in a larger scale τ are transferred
to smaller and smaller scales. Therefore, turbulence cascade may be
regarded as a stochastic process with the N-point joint transition conditional
probability density function (PDF) P(b1,τ1|b2,τ2, . . . ,bN,τN) defined by the
following conditional probability distribution density functions
P(bi,τi|b j,τ j) = P(bi,τi;b j,τ j)/P(b j,τ j),
with the unconditional probability P(b j,τ j).

This process is Markovian if the N-point joint transition conditional probability
distribution is ’memoreless’ and can therefore be determined by the initial
probability density function (PDF) P(b1,τ1|b2,τ2).
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Chapman-Kolmogorov Condition is satisfied for Markov turbulence:

P(b1,τ1|b2,τ2) =
∫ +∞

−∞

P(b1,τ1|b′,τ′)P(b′,τ′|b2,τ2)db′, (2)

where τ1 < τ′ < τ2. We use

Kramers-Moyal Expansion

− ∂P(b,τ|b′,τ′)
∂τ

=
∞

∑
k=1

(
− ∂

∂b

)k

D(k)(b,τ)P(b,τ|b′,τ′), (3)

where the coefficients D(k)(b,τ) are given by the moments of the conditional
PDFs

D(k)(b,τ) =
1
k!

lim
τ→τ′

1
τ− τ′

∫ +∞

−∞

(b′−b)kP(b′,τ′|b,τ)db′, (4)

in the limit τ→ τ′.
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Fokker-Planck Equation

If the fourth-order coefficient vanishes, then according to the Pawula’s
theorem, D(k)(b,τ) = 0 for k ≥ 3, and the series in Equation (3) stops after the
second term. Hence the Fokker-Planck equation (3) determining the evolution
of the transition probability has the following reduced form [Risken (1996)]:

− ∂P(b,τ|b′,τ′)
∂τ

=
[
− ∂

∂b
D(1)(b,τ)+

∂2

∂b2D(2)(b,τ)
]
P(b,τ|b′,τ′), (5)

where the first and second terms, are responsible for the drift and diffusion
processes, respectively. In this case the following well-known Langevin
equation

− ∂b
∂τ

= D(1)(b,τ)+
√

D(2)(b,τ)Γ(τ), (6)

for the delta-correlated Gaussian white noise 〈Γ(τ)Γ(τ′)〉 = 2δ(τ − τ′), and
〈Γ(τ)〉= 0 is satisfied [Rinn et al.(2016)].
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Figure 2: Comparison of the observed contours plots (red solid curves) of conditional
probabilities at various scales τ reconstructed from the MMS magnetic field strength (a) just
behind the bow shock (BS), (b) inside the magnetosheath (SH), and (c) near the magnetopause
(MP), corresponding to Figure 1, with those reconstructed (dashed blue curves) according
to the Chapman-Kolmogorov condition. The subsequent isolines correspond to the following
decreasing levels of the conditional probability density function (PDF), from the middle of the
plots, for bτ: case (a) 2, 1.1, 0.5, 0.3, 0.05, 0.01; case (b) 5, 1, 0.7, 0.45, 0.3, 0.22, 0.15, 0.1,
0.05; case (c) 7, 3.3, 1.3, 0.3, 0.08, 0.06.
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Figure 3: Comparison of cuts through P(b1,τ1|b2,τ2) for the fixed values of increments b2: (a) behind the

bow shock (BS), (b) inside the magnetosheath (SH), and (c) near the magnetopause (MP), with τ1 = 0.02 s, τ′ =

0.0278 s, and τ2 = 0.0356 s in cases (a) and (c), and with τ1 = 0.2 s, τ′ = 0.2625 s, and τ2 = 0.325 s in case (b).
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Figure 4: The first and second finite-size Kramers-Moyal coefficients depending on the
magnetic field increments b for the strength of the magnetic field B = |B|. The dashed red
lines show the best fits to the calculated values of D(1)(b,τ) and D(2)(b,τ) with D(4)(b,τ) = 0,
according to the Pawula’s theorem.
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Kramers-Moyal Coefficients
The best-obtained fits to these lowest-order coefficients are linear

D(1)(b,τ) =−a1(τ)b (7)

and quadratic functions of b

D(2)(b,τ) = a2(τ)+b2(τ)b2, (8)

respectively, where the appropriate fitted parameters ak for k = 1 and 2 and b2

depend on the time scale τ.
This corresponds to the generalized Ornstein-Uhlenbeck process.

For a usual Ornstein-Uhlenbeck process, we have{
D(1)(b,τ) =−a1(τ)b = γb,

D(2)(b,τ) = a2(τ) = D = const.
(9)
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The equation for the transition probability

∂P(b,τ|b′,τ′)
∂τ

= γ
∂

∂b
[bP(b,τ|b′,τ′)]+D

∂2

∂b2P(b,τ|b′,τ′), (10)

with the solution of the Gaussian distribution (τ > τ′) for γ > 0

P(b,τ|b′,τ′) =
√

γ

2πD(1− e−2γ(τ−τ′))
exp
[
− γ(b− e−γ(τ−τ′)b′)2

2D(1− e−2γ(τ−τ′))

]
. (11)

The stationary solutiun is recovered for γ(τ− τ′)� 1

Ps(b) =
√

γ

2πD
exp
(
− γb2

2D

)
. (12)

In the limit γ→ 0 we have the Wiener process.
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Wiener Process
In particular, {

D(1)(b,τ) = 0,

D(2)(b,τ) = D = const.
(13)

The diffusion equation

∂P(b,τ|b′,τ′)
∂τ

= D
∂2

∂b2P(b,τ|b′,τ′), (14)

with the initial conditions P(b,τ|b′,τ′) = δ(b−b′) the solution reads

P(b,τ|b′,τ′) = 1√
4πD(τ− τ′)

exp
(
− (b−b′)2

4D(τ− τ′)

)
. (15)

The general solution with the initial distribution P(b′,τ′) is P(b,τ) =∫ +∞

−∞
P(b,τ|b′,τ′)P(b′,τ′)db′ the Green function of Equation (14.
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Moreover, it appears that all of these parameters exhibit a power-law dependence on
temporal scale τ: 

a1(τ) = Aτ
α;

a2(τ) = Bτ
β;

b2(τ) =Cτ
γ,

(16)

where the values for all of the logarithmized parameters A,B,C ∈ R, as well as the α,β,γ ∈ R
are given in Table 2.

Table 2: Fitted parameters for power-law dependence of first- and second-order
Kramers—Moyal coefficients of Eqs. (7), (8), and (16) as functions of scale τ

Case log10(A) α log10(B) β log10(C) γ

(a) 0.6989 ±
0.0225

−1.1191±
0.0089

−0.4946±
0.1259

1.1631 ±
0.0498

0.5854 ±
0.0706

−1.7325±
0.0279

(b) 0.1837 ±
0.0139

−1.0417±
0.0100

−0.4666±
0.0160

0.5425 ±
0.0116

0.4183 ±
0.0163

−1.2233±
0.0118

(c) 0.7791 ±
0.0079

−1.1055±
0.0057

−0.5893±
0.0126

1.0002 ±
0.0091

0.5011 ±
0.0274

−1.7646±
0.0199
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Figure 5: Linear dependence of the parameters a1,a2,b2 in Eqs. (7) and (8) on the double logarithmic scale: (a)

near the bow shock (BS), (b) inside the magnetosheath (SH), and (c) near the magnetopause (MP). The dashed

red lines, with the standard error illustrated by gray shade, show the best fits to the calculated parameters.
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Stationary Solution

By using the linear and parabolic fits of Figures (4) and (5) the stationary
solutions of Equation (5) become the well-known continuous kappa distributions
(also known as Pearson type VII distribution), which probability density function
(PDF) is defined as [Macek et al.(2023)]:

ps(b,τ) =
No[

1+ 1
κ

(
b
bo

)2]κ
=

N ′o[
a2(τ)+b2(τ)b2

]1+ a1(τ)
2b2(τ)

(17)

with κ = 1+ a1(τ)/[2b2(τ)] and b2
o = a2(τ)/b2(τ)/κ = a2(τ)/[b2(τ) + a1(τ)/2] (for

a2(τ) 6= 0, bo(τ) 6= 0) satisfying the normalization,
∫ +∞

−∞
ps(b,τ)db = 1, No =

ps(0,τ) = Γ(κ)

bo
√

πκΓ(κ−1/2) and N ′o = No · [a2(τ)]
κ, with the boundary condition

ps(b→±∞, τ)→ 0. For κ → ∞, the distribution approaches the normal
Gaussian distribution Noexp

(
− b2

2σ2

)
with the standard deviation σ = bo/

√
2

and the normalization No =
1

σ
√

2π
.
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Figure 6: The empirical probability density functions (various continuous colored lines) for a
total strength of magnetic field B = |B|, which correspond to cases in Fig. 1compared with the
non-stationary (dashed lines) and the stationary (open circles) solutions of the Fokker-Planck
equation, for various time-scales (shifted from bottom to top) τ = 0.0078, 0.04, 0.078, 0.12, 0.2,
0.39, and 0.78 s in cases (a) and (c), and τ = 0.0625, 0.3125, 0.625, 0.9375, 1.5625, 3.125,
9.375 s in case (b).
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Figure 7: A universal scale-invariance of the collapsing probability density
functions (PDFs) of b rescaled by the respective standard deviations σb,τ,
corresponding to the kappa distributions in Figure 6 on the kinetic scales up
to (a) τ∼ 0.4 s, (b) τ∼ 2 s, and (c) τ∼ 0.25 s, correspondingly.
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Conclusions

• Magnetospheric Multiscale and Parker Solar Probe missions with
unprecedented high millisecond time resolution of magnetometer data allow
us to investigate turbulence on very small kinetic scales [Macek et al.(2023),
Macek & Wójcik(2023)]. In this paper we have looked at the MMS
observations above 20 Hz, where the magnetic spectrum becomes very
steep, with the slope, close to -16/3, resulting possibly from interaction
between coherent structures [Macek et al.(2018)].

• Following our previous studies in the inertial region [Strumik & Macek(2008a),
Strumik & Macek(2008b)] we have shown for the first time that the
Chapman-Kolmogorov equation, which is a necessary condition for the
Markovian character of turbulence, is satisfied, exhibiting a local transfer
mechanism of turbulence cascade also on much smaller kinetic scales.
Moreover, we have verified that in this case the Fokker-Planck equation
is reduced to drift and diffusion terms at least for scales smaller than (a)
τ∼ 0.8 s, (b) τ∼ 9 s, and (c) τ∼ 0.8 s, correspondingly.
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• In particular, similarly as for Parker Solar Probe (PSP) data analyzed by
[Benella et al.(2022)] these lowest-order coefficients are linear and quadratic
functions of magnetic field, which correspond to the generalized Ornstein-
-Uhlenbeck processes. We have also recovered a similar universal scale-
-invariance of the probability density functions (PDFs) up to kinetic scales of
(a) τ∼ 0.4 s, (b) τ∼ 2 s, and (c) τ∼ 0.25 s, correspondingly.

• It is interesting to note that for moderate scales we have also non-Gaussian
kappa distribution, which for the smallest values of the available scale of
7.8 ms, is approximately described by a very peaked shape close to the
Dirac delta function. We also show that the normal Gaussian distribution
is recovered for timescales two orders larger (with a large value of kappa
parameter).

• We hope that our observation of Markovian futures in solar wind turbulence
will be important for understanding the relationship between deterministic
and stochastic properties of turbulence cascade at kinetic scales in complex
astrophysical systems.
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[Macek et al.(2018)] Macek, W. M., Krasińska, A., Silveira, M. V. D., Sibeck, D. G.,
Wawrzaszek, A., Burch, J. L., & Russell, C. T. 2018, Magnetospheric Multiscale observations
of turbulence in the magnetosheath on kinetic scales, Astrophysical Journal Letters, 864,
L29, https://doi.org/10.3847/2041-8213/aad9a8.
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[Macek & Wójcik(2023)] Macek, W. M., & Wójcik, D. 2023, Statistical analysis of stochastic
magnetic fluctuations in space plasma based on the MMS mission, arXiv=2309.06585,
Monthly Notices of the Royal Astronomical Society, 526, 5779–5790, https://doi.org/
10.1093/mnras/stad2584.
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