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Abstract

We argue that dynamical behaviour of space plasmas can often be approximately
described by low-dimensional chaotic attractors in the inertial manifold, which is a
subspace of a given system phase space. In fact, using nonlinear time-series analysis
based on the method of topological embedding a chaotic strange attractor has been
identified in the solar wind data (Macek, 1998) as further examined, e.g., by Macek et
al. (2005). In particular, we have shown that the multifractal spectrum of the solar wind
attractor is consistent with that for the self-similar generalized weighted Cantor set with
one probability measure parameter of the chaotic attractor and one or possibly two scaling
parameters describing nonuniform compression in the phase space of the system. The
values of the parameters fitted demonstrate small dissipation of the complex solar wind
plasma and show that some parts of the attractor in phase space are visited much more
frequently than other parts.
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To quantify the multifractality of space plasma turbulence, we have recently
considered that generalized two-scale weighted Cantor set also in the context of solar
wind intermittent turbulence (Macek and Szczepaniak, 2008). We investigate the resulting
multifractal spectrum of generalized dimensions depending on parameters of the new
cascade model, especially for asymmetric scaling. In particular, we show that intermittent
pulses are stronger for the model with two different scaling parameters a much better
agreement with the solar wind data is obtained, especially for the negative index of the
generalized dimensions.

Therefore we argue that there is a need to use a two-scale cascade model. We hope
that this generalized multifractal model will be a useful tool for analysis of intermittent
turbulence in the Solar System plasma. We thus believe that fractal analysis of chaotic
phenomena in the complex space environment could lead us to a deeper understanding
of their nature, and maybe even to predict their seemingly unpredictable behaviour.
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Within the complex dynamics of the solar wind’s
fluctuating intermittent plasma parameters, there is a
detectable, hidden order described by a strange chaotic
attractor that exhibits a multifractal structure.
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Prologue

A fractal is a rough or fragmented
geometrical object that can be subdivided
in parts, each of which is (at least
approximately) a reduced-size copy of
the whole. Fractals are generally self-
similar and independent of scale (fractal
dimension).

A multifractal is a set of intertwined
fractals. Self-similarity of multifractals
is scale dependent (spectrum of
dimensions).

Two-scale Cantor set.
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Chaos and Attractors

CHAOS (χαoς) is

• APERIODIC long-term behavior
• in a DETERMINISTIC system
• that exhibits SENSITIVITY TO INITIAL CONDITIONS.

A positive finite Lyapunov exponent (metric entropy) implies chaos.

An ATTRACTOR is a closed set A with the properties:

1. A is an INVARIANT SET:
any trajectory x(t) that start in A stays in A for ALL time t.

2. A ATTRACTS AN OPEN SET OF INITIAL CONDITIONS:
there is an open set U containing A (⊂U) such that if x(0) ∈U , then the distance from
x(t) to A tends to zero as t→ ∞.

3. A is MINIMAL:
there is NO proper subset of A that satisfies conditions 1 and 2.
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The nature of the fluctuations in solar wind plasma parameters is still very little
understood. The slow solar wind most likely originates from nonlinear processes in the
solar corona. However, it appears that a certain kind of order does lie concealed within
the irregular solar wind fluctuations, which can be described using methods of nonlinear
time series analysis, based on fractal analysis and the theory of deterministic chaos. This
involves the notions of fractal and multifractal sets, which could presumably be strange
attractors in a certain state space of a given complex dynamical system. By employing
the so-called false-nearest-neighbors method, we have argued that the deterministic
component of solar wind plasma dynamics should be low-dimensional (Macek and
Strumik, 2006). In fact, the results we have obtained using the method of topological
embeddings indicate that the behavior of the solar wind can be approximately described
by a low-dimensional chaotic attractor in the inertial manifold, which is a subspace of
system phase space.
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A direct determination of the solar wind attractor from the data is known to be a
difficult problem. This chaotic strange attractor has been identified in the solar wind data
by Macek (1998) as further examined by Macek and Redaelli (2000). In particular, Macek
(1998) has calculated the correlation dimension of the reconstructed attractor in the solar
wind and has provided tests for this measure of complexity including statistical surrogate
data tests (Theiler et al., 1992). Further, Macek and Redaelli (2000) have shown that the
Kolmogorov entropy of the attractor is positive and finite, as it holds for a chaotic system.

The question of multifractality is of great importance because it allows us to look
at intermittent turbulence in the solar wind (e.g., Marsch and Tu, 1997; Bruno et al.,
2001). Starting from Richardson’s scenario of turbulence, many authors try to recover
the observed scaling exponents, using some simple and more advanced fractal and
multifractal models of turbulence describing distribution of the energy flux between
cascading eddies at various scales. In particular, the multifractal spectrum has been
investigated using Voyager (magnetic field) data in the outer heliosphere (e.g., Burlaga,
1991, 2001) and using Helios (plasma) data in the inner heliosphere (e.g., Marsch et al.,
1996). The multifractal scaling has also been tested using Ulysses observations (Horbury
et al., 1997) and with ACE/WIND data (e.g., Hnat et al., 2003, 2007; Chapman et al.,
2006; Kiyani et al., 2007).
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We have also analyzed the spectrum for the solar wind attractor. This spectrum
has been found to be consistent with that for the multifractal measure of the self-similar
weighted baker’s map with two parameters describing uniform compression and natural
invariant probability measure of the attractor of the system (Macek, 2002, 2003, 2006,
2007; Macek et al., 2005, 2006).

Recently, in order to further quantify the multifractality, we have considered
the generalized weighted Cantor set with two different scales describing nonuniform
compression also in the context of turbulence cascade (Macek and Szczepaniak, 2008).
Even thought one can find this general Cantor set in many classical textbooks, e.g.,
(Falconer, 1952, Ott, 1993), it is still difficult to understand this strange attractor that
exhibits multifractality in various complex real systems, also in case of intermittent
turbulence.

Hence we have argued that there is, in fact, need to use a two-scale cascade model.
Therefore, we investigate the resulting multifractal spectrum of the energy flux depending
on two scaling parameters and one probability measure parameter, demonstrating that
intermittent pulses are stronger for asymmetric scaling and a much better agreement is
obtained especially for q < 0. We hope that this generalized new asymmetric multifractal
model could shed light on the nature of turbulence and will be a useful tool for analysis of
intermittent turbulence in various environments.
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A schematic model of the solar wind ”ballerina”: the Sun’s two hemispheres are
separated by a neutral layer of a form reminiscent of a ’ballerina’s skirt’. In the inner
heliosphere the solar wind streams are of two forms called the slow (≈ 400 km s−1) and
fast (≈ 700 km s−1). The fast wind is associated with coronal holes and is relatively
uniform and stable, while the slow wind is quite variable, taken from (Schwenn and
Rosenbauer, 1984).
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Structures in the solar wind and their sources in the corona (solar map), taken from
(Schwenn and Rosenbauer, 1984).
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Helios Spacecraft

Orbits
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Attractor Reconstruction

Fig. 2. The projection of the attractor onto the three-dimensional space, reconstructed
from the detrended data, T = 4 ∆t, using (a) the moving average and also (b) the singular-
value decomposition filters (Ψ = U), taken from (Macek, 1998).
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Methods of Data Analysis

Generalized Dimensions

The generalized dimensions are important characteristics of complex dynamical
systems. Since these dimensions are related to frequencies with which typical orbits
in phase space visit different regions of the system, they can provide information about
its dynamics.

The modern technique of nonlinear time series analysis allows to estimate the
multifractal measure directly from a single time series.

Structure Functions Scaling

Sq
u(l), qth order structure function (q > 0) in the inertial range (η� l� L)

Sq
u(l) = 〈|u(x+ l)−u(l)|q〉 ∼ lξ(q) (1)

u(x), a velocity component parallel to the longitudinal direction l
ξ(q), a scaling exponent.
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Energy Transfer Rate

εl ∼
|u(x+ l)−u(x)|3

l
µi =

εl

〈εL〉
(2)

∑
i

µq
i ∼ lτ(q) (3)

τ(q) = (q−1) Dq (4)

εl, a transfer of energy per unit time (and unit mass)
µi, probability measure of ith eddy in the d-dimensional physical space.

From Equations (1 ) to (4) we have (Tsang et al., 2005):

τ(q) = d(q−1)+ξ(3q)−qξ(3) (5)
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Mutifractal Models for Turbulence

Fig. 1. Generalized two-scale Cantor set model for turbulence (Macek, 2007).
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For the generalized self-similar weighted Cantor set (acting on the unit interval)
we use the following partition function at n-th level of construction
(Hentschel and Procaccia 1983; Halsey et al., 1986)

Γ
q
n(l1, l2, p1, p2) =

(
pq

1

lτ(q)
1

+
pq

2

lτ(q)
2

)n

= 1 (6)

Parameters:

• p1 = p ≤ 1/2, natural invariant measure on the attractor of the system, the probability
of visiting one region of the interval (the probability of visiting the remaining region is
p2 = 1− p);

• l1 + l2 ≤ 1, two nonuniform compression (dissipation) parameters (stretching and
folding in the phase space).
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Solutions

Transcendental equation (for n→ ∞)

pq

lτ(q)
1

+
(1− p)q

lτ(q)
2

= 1 (7)

Legendre transformation

α(q) =
d τ(q)

dq
(8)

f (α) = qα(q)− τ(q) (9)

Chaos 2008, 3-6 June 2008, Chania, Greece 19



For l1 = l2 = s and any q in Eq. (7) one has for the generalized dimension of the
attractor (projected onto one axis)

(q−1)Dq =
ln[pq +(1− p)q]

ln s
. (10)

No dissipation (s = 1/2):
the multifractal cascade p−model for fully developed turbulence,
the generalized weighted Cantor set (Meneveau and Sreenivasan, 1987).
The usual middle one-third Cantor set (without any multifractality):
p = 1/2 and s = 1/3.

The difference of the maximum and minimum dimension
(the least dense and most dense points on the attractor)

∆≡ αmax−αmin = D−∞−D∞ =
∣∣∣∣log(1− p)

log l2
− log(p)

log l1

∣∣∣∣ (11)

In the limit p→ 0 this difference rises to infinity (degree of multifractality).
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Fig. 3. (a) The generalized dimensions Dq in Equation (4) as a function of q. The
correlation dimension is D2 = 3.4±0.1. The values of Dq +3 are calculated analytically
for one-scale weighted Cantor set (baker’s map) with p = 0.12 and s = 0.47 (dashed
line). (b) The singularity spectrum f (α) as a function of α. The values of f (α) projected
onto one axis for the weighted baker’s map with the same parameters (dashed line),
taken from (Macek, 2006).
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Fig. 4. (a) The generalized dimensions Dq in Equation (4) as a function of q. The
values of Dq + 3 are calculated analytically for the weighted two-scale Cantor set with
p = 0.20 and l1 = 0.60, l2 = 0.25 (dashed line). (b) The singularity spectrum f (α) as a
function of α. The values of f (α) projected onto one axis for the weighted two-scale
Cantor set with the same parameters (dashed line), taken from (Macek, 2007).
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Data

Table 1: The time intervals (days) of Helios 2 data in 1976 for slow and fast
solar wind streams measured at various distances from the Sun.

∼ 0.3 AU ∼ 0.97 AU
Slow streams 99 - 102 105 - 108
Fast streams 26 - 29 21 - 24
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Fig. 5. The generalized dimensions Dq as a function of q. The values for one-
dimensional turbulence are calculated for the generalized two-scale (continuous lines)
model and the usual one-scale (dashed lines) p-model and fitted using the vx radial
velocity components (diamonds) for the slow (a) and fast (b) solar wind streams at
distances of 0.3 AU (Macek and Szczepaniak, 2008).
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Fig. 5. The generalized dimensions Dq as a function of q. The values for one-
dimensional turbulence are calculated for the generalized two-scale (continuous lines)
model and the usual one-scale (dashed lines) p-model and fitted using the u = vx radial
velocity components (diamonds) for the slow (c) and fast (d) solar wind streams at
distances of 0.97 AU (Macek and Szczepaniak, 2008).
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Fig. 6. The singularity spectrum f (α) as a function of α. The values for one-
dimensional turbulence are calculated for the generalized two-scale (continuous lines)
model and the usual one-scale (dashed lines) p-model and fitted using the u = vx radial
velocity components (diamonds) for the slow (a) and fast (b) solar wind streams at
distances of 0.3 AU (Macek, 2008).
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Fig. 6. The singularity spectrum f (α) as a function of α. The values for one-
dimensional turbulence are calculated for the generalized two-scale (continuous lines)
model and the usual one-scale (dashed lines) p-model and fitted using the u = vx radial
velocity components (diamonds) for the slow (c) and fast (d) solar wind streams at
distances of 0.97 AU (Macek, 2008).
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Fig. 7. The multifractal measure ε/〈ε〉 on the unit interval for (a) the usual one-
scale p-model (Meneveau and Sreenivasan, 1987) and (b) the generalized two-scale
cascade model. Intermittent pulses are stronger for the model with two different scaling
parameters (Macek and Szczepaniak, 2008).
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The values of parameter p are related to the usual models, are based on the p-model
of turbulence (e.g. Meneveau and Sreenivasan, 1987).

These values of p obtained here are roughly consistent with the fitted value in the
literature both for laboratory and the solar wind turbulence, which is in the range 0.1≤ p≤
0.3 (e.g., Burlaga, 1991; Carbone, 1993; Carbone and Bruno, 1996; Marsch et al., 1996).
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Conclusions

In this way, we have supported our conjecture that

• trajectories describing the system in the inertial manifold of phase space
asymptotically approach the attractor of low-dimension (Macek, 1998).

• The obtained multifractal spectrum of this attractor is consistent with that for the
multifractal measure on the generalized weighted two-scale Cantor set, which is a
strange attractor that exhibits stretching and folding properties leading to sensitive
dependence on initial conditions (Macek, 2006, 2007).

• The values of the parameters fitted for l1 + l2 = 1 and p ∼ 10−1, demonstrates small
dissipation of the complex solar wind dynamical system and shows that some parts
of the attractor in phase space are visited at least one order of magnitudes more
frequently than other parts.
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• We have also studied the inhomogeneous rate of the transfer of the energy flux
indicating multifractal and intermittent behaviour of solar wind turbulence in the inner
heliosphere.

• Basically, the generalized dimensions for solar wind are consistent with the
generalized p-model for both positive and negative q, but rather with different scaling
parameters for sizes of eddies, while the usual p-model can only reproduce the
spectrum for q ≥ 0. We have demonstrated that a much better agreement of the two-
scale model with the real data is obtained, especially for q < 0.

• We also show that intermittent pulses are stronger for the model with asymmetric
scaling.

• In general, the proposed generalized two-scale weighted Cantor set model should
also be valid for non space filling turbulence. Therefore we propose this new cascade
model describing intermittent energy transfer for analysis of turbulence in various
environments.
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Epilogue

Thus these results provide supporting
evidence for multifractal structure of the
solar wind in the inner heliosphere.

This means that the observed
intermittent behavior of the solar
wind’s velocity and Alfvénic fluctuations
results from intrinsic nonlinear dynamics
rather than from random external forces.

The multifractal structures, convected by
the solar wind, might probably be related
to the complex topology shown by the
magnetic field at the source regions of the
solar wind.

Thank you!
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