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Abstract

We consider a low-dimensional model of convection in a horizontally magnetized layer
of a viscous fluid heated from below. We analyze in detail the stability of hydromagnetic
convection influenced by the induced magnetic field for a wide range of two control
parameters. Namely, when changing the initially applied temperature difference or
magnetic field strength, one can see transitions from regular to irregular long-term
behavior of the system, switching between chaotic, periodic, and equilibrium asymptotic
solutions. It is worth noting that owing to the induced magnetic field a transition to
hyperchaotic dynamics is possible for some parameter values of the model. In particular,
we discuss in detail irregular behavior of the system including new strange attractors,
also in a hyperchaotic regime and new types of bifurcations leading to intermittency. We
also reveal new features of the generalized Lorenz model, including both type I and III
intermittency.
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Hydromagnetic Convection

Dynamics of irregular flows in viscous fluids is still not sufficiently well
understood. Newly published paper in Physical Review Letters sheds light
on hydromagnetic convection.

Phys. Rev. Lett. 112, 074502 (2014)

It appears that behavior of this system can rather be complex: from
equilibrium or regular (periodic) motion, through intermittency (where
irregular and regular motions are intertwined ) to nonperiodic behavior.
Two types of such nonperiodic flows are possible, namely chaotic and
hyperchaotic motions. As discovered by Lorenz (1963), deterministic
chaos exhibits sensitivity to initial conditions leading to unpredictability of
the long-term behavior of the system (butterfly effect).
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Obviously, hyperchaos is a more complex nonperiodic flow, which is
now discovered in the generalized Lorenz model previously proposed by
the authors in 2010. The results of the present paper illustrate how all
these complex motions can be studied by analyzing this simple model.

In particular, it is shown that various kinds of complex behavior are
closely neighbored depending on two control parameters of the model.

Naturally, the convection appears in plasmas, where electrically
charged particles interact with the magnetic field. Therefore, the obtained
results could be important for explaining dynamical processes in solar
sunspots, planetary and stellar liquid interiors, and possibly for plasmas
in nuclear fusion devices. It worth noting that in order to get similar
information from direct numerical simulations one would require many
years of instantaneous computations using tremendous computational
resources.
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Lorenz Model

Ẋ = σ(Y −X)
Ẏ =−XZ + rX−Y
Ż = XY −bZ

Parameters:
r = 28, σ = 10, b = 8/3

Time series for X Attractor
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Convection in a Magnetized Fluid
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Convection in a Magnetized Fluid
Additional conditions

∇ ·v = 0,
∇ ·B = 0

allow to define
v = ∇×Ψ,
B = ∇×A

a stream (potential) function ψ for the flow v:

Ψ = {0,ψ(x,z, t),0}

and a (vector) potential A for the embedded magnetic field B:

A/(µoρo)
1/2 = {0,α(x,z, t)−υAoz,0}

where υAo = Bo/(µoρo)
1/2 is the initial Alfvén speed.

Approximation used: (B ·∇)v≈ (Bo ·∇)v.
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Rayleigh-Bénard Convection in a Magnetized
Fluid

Double asymmetric Fourier representation:
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The velocity field is described by ψ(x,z, t) [variable X(t)],
the temperature gradient by θ(x,z, t) [variables Y (t),Z(t)],
and the induced magnetic field by α(x,z, t) [variable W (t)].
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Lorenz Model for a Magnetized Fluid
Using those approximations fluid dynamics can be described by a simple
set of four ordinary differential equations

Ẋ =−σX +σY −ω0W, (4)

Ẏ =−XZ + rX−Y, (5)
Ż = XY −bZ, (6)

Ẇ = ω0X−σmW, (7)
where a dot denotes an orinary derivative with respect to the normalized

time t ′ = (1+a2) κ(π/h)2 t, using a geometrical factor b = 4/(1+a2).

Control parameter r = Ra/Rc;
Rayleigh number Ra = gβh3δT/(νκ), critical number Rc = (1+a2)3(π2/a)2.
Magnetic control parameter
ωo = υAo/υo;
υAo = Bo/(µoρo)

1/2, υo = 4πκ/(abh)
Prandtl number σ = ν/κ;
Magnetic Prandtl number ν/η, σm = η/κ.
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Lorenz Model for a Magnetized Fluid

Combining the set of the generalized Lorenz system we can write

Ẍ +σẊ +(σr−ω
2
o)X =−σ(Y +XZ)+σmωoW,

Ẅ +σmẆ +ω
2
oW = σωo(Y −X).

Hence formally both variables X and W satisfy the equations of two familiar
damped linear oscillators with nonlinear driving forces. Moreover, we can
see that the coupling between X , W and Y , Z is enhanced owing to the
magnetic field B. Obviously, when ωo = 0 this coupling ceases and the
variable W is damped by the magnetic viscosity.
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Fixed Points (Equilibrium)

ẋ = F(x), F(x∗) = 0, x∗ = {X∗,Y ∗,Z∗,W ∗}

C0 = {0,0,0,0},
C± = {±d/

√
1+ e,± d

√
(1+ e),r− (1+ e),±(σ/ωo)de/

√
1+ e},

where d =
√

b((r−1)− e), and e = ω2
o/(σ σm).

C0 stable for 0≤ r < ro,
C± stable for ro ≤ r < rH,
ro = 1+ e is a critical value for the onset of convection,
r = rH is a critical value, where a Hopf bifurcation takes place.

The critical number ro for the onset of convection increases with the
magnetic field, thus the magnetic field should stabilize the convection as
regards to the appearance of convective rolls.

However, if we consider oscillations of the convection rolls, the influence of
the magnetic field is more intricate.
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Long-term Behavior Depending on Control
Parameters

r = Ra/Rc, Ra = gβh3δT/(νκ), Rc = (1+a2)3(π2/a)2

ωo = υAo/υo, υAo = Bo/(µoρo)
1/2, υo = 4πκ/(abh)
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Dependence of the largest Lyapunov exponent λ1 (color-coded) on ω0 and r parameters of the generalized Lorenz model for (a)
σm = 0.1. Other parameters of the system have fixed values: σ = 10, b = 8/3. Convergence of the solutions of Eqs. (4)–(7) to
fixed points (λ1 < 0) is shown in black, to periodic solutions (λ1 = 0) – in violet/blue color (see the color bar for λ1 = 0), to chaotic
solutions (λ1 > 0) – in a color, consistently with the color bar scale, from violet/blue to yellow. For the panel an enlargement of
the region bounded by black lines is shown in the right-bottom part of plots. Fine structures are shown in the inset (Macek and
Strumik, 2014).

Lisbon, Chaos 2014 14



Dependence of the largest Lyapunov exponent λ1 (color-coded) on ω0 and r parameters of the generalized Lorenz model for (b)
σm = 1. Other parameters of the system have fixed values: σ = 10, b = 8/3. Convergence of the solutions of Eqs. (4)–(7) to
fixed points (λ1 < 0) is shown in black, to periodic solutions (λ1 = 0) – in violet/blue color (see the color bar for λ1 = 0), to chaotic
solutions (λ1 > 0) – in a color, consistently with the color bar scale, from violet/blue to yellow. For the panel an enlargement of
the region bounded by black lines is shown in the right-bottom part of plots. Fine structures are shown in the inset (Macek and
Strumik, 2014).
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Dependence of the largest Lyapunov exponent λ1 (color-coded) on ω0 and r parameters of the generalized Lorenz model for (b)
σm = 3. Other parameters of the system have fixed values: σ = 10, b = 8/3. Convergence of the solutions of Eqs. (4)–(7) to
fixed points (λ1 < 0) is shown in black, to periodic solutions (λ1 = 0) – in violet/blue color (see the color bar for λ1 = 0), to chaotic
solutions (λ1 > 0) – in a color, consistently with the color bar scale, from violet/blue to yellow. For the panel an enlargement of
the region bounded by black lines is shown in the right-bottom part of plots. Fine structures are shown in the inset (Macek and
Strumik, 2014).
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Strange Attractors for a Magnetized Fluid
Ẋ =−σX +σY −ωoW,
Ẏ =−XZ + rX−Y,
Ż = XY −bZ,
Ẇ = ωoX−σmW,

Standard parameters: r = 28, σ = 10, and b = 8/3
ωo = 1, σm = 20 ωo = 1, σm ≈ 0
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Strange Attractors for a Magnetized Fluid

ωo = 6, σm = 2 ωo = 5, σm ≈ 0
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Intermittent Behavior
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Intermittent Behavior

Type I intermittency (identified using Poincaré map based on Y values
taken for X=0 plane crossings). Distribution of lengths τ of laminar phases
for a deviation ε = p− pT > 0 from a critical value for bifurcation pT

P(τ)=
ε

2c

{
1+tan2

{
arctan[

c
(ε/u)1/2]

}
(8)

−τ(εu)1/2
}

average < τ >∼ ε
−1/2

U-shape and finite value
of maximum length of laminar
phase
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Intermittent Behavior

Type III intermittency (identified using Poincaré map based on Y values
taken for X=0 plane crossings). Distribution of lengths τ of laminar phases
for a deviation ε = p− pT > 0 from a critical value for bifurcation pT

P(τ) ∝
ε3/2e4ετ

(e4ετ−1)3/2

average < τ >∼ ε
−1

P(τ)∼ τ
−3/2 for small τ→ 0

(fully developed turbulence)

P(τ)∼ e−2ετ for large τ→∞

(self-organized criticality)
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Scaling of the mean length of the laminar phase with control parameter ε = |ω0−ω0c|, where ω0c is a
critical value at which intermittency appears: (a) for type I intermittency the dependence resulting from
computations (circles) can be approximated by ∝ ε−1/2 function (solid line), (b) for type III intermittency
∝ ε−1, cf. (Macek and Strumik, 2014).

Lisbon, Chaos 2014 22



Hyperchaotic Convection

Dependence of the two largest Lyapunov exponents λ1 (red line) and λ2 (black line), λ1 > λ2, on the
parameter r of the system for fixed values of the other parameters: ω0 = 5.95, σm = 0.1, σ = 10, and
b = 8/3. A transition to hyperchaotic dynamics is observed, when the second Lyapunov exponent λ2
becomes positive for r ≥ 454.7, taken from (Macek and Strumik, 2014).
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Possible Applications of the Model

• liquid interiors of the Earth’s core (the geodynamo model),

• interiors of the Sun and stars, including massive stars with heavy
elements (Brite experiment),

• solar sunspots and coronal holes, granulation;

• the flow in the magnetosphere and heliosphere, and even in interstellar
and intergalactic media;

• magneto-confined plasmas in tokamaks;

• nanodevices and microchannels in nanotechnolgy.
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Conclusions

• We have proposed a new low-dimensional model describing self-
consistently convective transport of the magnetic field applied along
a horizontal layer of a viscous fluid. In addition to the usual three-
dimensional Lorenz model a new variable describes the profile of the
induced magnetic field. Nonperiodic oscillations are influenced by
anisotropic magnetic forces resulting not only in an additional viscosity
but also substantially modifying nonlinear forcing of the system.

• This four-dimensional dynamical system exhibits quite unusual features
depending on the control parameters of the model. More specifically, by
increasing an initial temperature difference and magnetic field strength
one can switch-on and -off between nonperiodic (chaotic), periodic (limit
cycle), and equilibrium (fixed point) asymptotic solutions.

• In addition, because of fine structure illustrated in the space of both
control parameters, the influence of the induced magnetic field of the
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properties of the fluid could be much more intricate than a simple
stabilizing effect predicted by simplified analysis of influence of the
magnetic field on convective motion discussed in textbooks, see,
e.g. (Cowling, 1976). This is interesting because there are physical
situations where even weak field may have strong destabilizing effect.

• In particular, still in a chaotic regime but near the border with periodic
solutions, in addition to previously identified type III intermittency, we
have also observed type I intermittent behavior of the system that could
provide new mechanisms of release of kinetic and magnetic energy
bursts. It is worth noting that the observed sudden transitions from
regular to irregular behavior only mimic stochastic forces, but in fact
they result from nonlinearity, i.e., they are due to the disappearance of
the fixed points of the dynamical system or owing to change in their their
stability.

• In this way, we have identified here a basic mechanism of intermittent
release of energy bursts, ν|v|2 + η|B|2/(µoρ), which is frequently
observed in space and laboratory plasmas.
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• It is important to note that besides the chaotic behavior well known for
the Lorenz model with unmagnetized fluid, we have also identified here
for the first time a hyperchaotic dynamics, with two positive Lyapunov
exponents appearing for some value of the intensity of the applied
magnetic field (Macek and Strumik, 2014). In this context the new
hyperchaotic system characterized by both types I and III of intermittent
energy release may provide an approximate description of irregular
convective dynamical processes observed often in various plasmas in
both space and laboratory.

• Hence we hope that our simple but still a more general nonlinear
model could shed light on the nature of hydromagnetic turbulent
convection, helping to identify chaotic and intermittent behavior in
various environments.

• We propose this model as a useful tool for analysis of intermittent
behavior of various environments, including convection in planets and
stars.
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