Intermittent Nature of the Solar Wind Turbulence: Multifractal Analysis

A. SZCZEPANIAK, a W.M. MACEK, a,b

^aSpace Research Centre, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland ^bFaculty of Mathematics and Natural Sciences. College of Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland

ABSTRACT	3 Methods of Analysis	4.3 The D_q as a function of q
One of the features related to turbulence is the understanding of the energy transfer among different scales of the flow. Based on the Richard-	3.1 Structure functions scaling	Slow Solar Wind Fast Solar Wind
son's energy cascade description of several models, which take into account small-scale intermittency have been developed [1-4]. In our considerations	$S_{u}^{q}(l) = \langle u(x+l) - u(l) ^{q} \rangle \sim l^{\xi(q)} (\eta < < l < < L) $ (2)	$Day 99-102 R(AU)=0.3 Day 105-108 R(AU)=0.3$ 1.0 $1.0 \begin{bmatrix} * & * & * & * & * & * & * & * & * & *$
bulence is not space filling and the energy transfer rate depends on scale. Namely, in general we assume two different scaling parameters for sizes of	$S_u^q(l)$ - q th order structure function, $q > 0$ u(x) - velocity component paraller to the l	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
eddies and a probability measure parameter describing portion of energy transferred to smaller eddies. For analysis we use multifractal fromalism,	$\xi(q)$ - scaling exponent in the inertial range	$ \begin{array}{c} \begin{array}{c} 0.4 \\ 0.4 \\ 0.2 \\$
which permits for an intuitive understanding of multiplicative processes [5, 6]. In particulary, we analyse scaling of the velocity structure functions	3.2 Multifractal dissipation	$0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \end{bmatrix} \\ 0.0 \begin{bmatrix} 0.2 \\ 0.0 \end{bmatrix} \\ 0.0 \\ 0.0 \end{bmatrix} \\ 0.0 \\ 0.0 \end{bmatrix} \\ $
[7] and the energy dissipation rate [8]. Using relation of scaling exponents and dissipation rate with the multifractal formalism we obtain general	$\varepsilon_l \sim \frac{S_u^3(l)}{l} \qquad \mu_i = \frac{\varepsilon_l}{l} \qquad (3)$	q q

and dissipation rate with the multifractal formalism we obtain generalized dimensions and singularity spectra. We compare the results of the proposed model with the experimental data of the solar wind plasma parameters measured in situ by Helios 2 spacecraft in the inner heliosphere. This shows mulitfractal behaviour of the data set under study.

1 <u>Theoretical Model</u>

1.1 Generalized P-model

At each stage of construction for the propoused model we have two scaling parameters (l_1, l_2) and two different weights p and 1 - p. In order to obtain generalized dimensions and singularity spectrum for this example of multifractals we use the partition function formalism

$$\Gamma_n(l_1, l_2, p, 1-p) = \left(\frac{p^q}{l_1^{\tau(q)}} + \frac{(1-p)^q}{l_2^{\tau(q)}}\right)^n = 1$$

where n is the level of construction.

$$c_l \qquad l \qquad \mu_l \qquad \langle \epsilon_L \rangle$$

 $D_q = d + \frac{\xi(3q) - q\xi(3)}{q - 1}$

(4)

(5)

$$\sum_{i} \mu_{i}^{q} \sim l^{(q-1)D_{q}} \sim l^{d(q-1)+\xi(3q)-q\xi(3)}$$

 ε_l - energy dissipation rate μ_i - probability measure d - dimension of the space

(1)

4.1 Non-uniform energy distribution

5 <u>Conclusions</u>

- We have studied departure from Kolmogorov scaling indicating multifractal (intermittent) behaviour of the solar wind in the inner heliosphere.
- Analysis shows that slow solar wind velocity fluctuations are more intermittent and more anistoropic than for the fast solar wind.
- As the heliocentric distrance increases the solar wind becomes more multifractal.
- Generalized dimensions for solar wind are consistent with the generalized *p*-model with different scaling parameters for sizes of eddies.
- We propose the generalized p-model set for intermittent dissipation energy cascade in the solar wind turbulence.

Fig.5: Structure functions of the radial velocity component for the slow solar wind. Dashed lines indicate the inertial range.

Fig.6: The scaling exponents $\xi(q)$ of the radial velocity structure functions plotted versus q.

References

[1] Kolmogorov, A.N., A refinement of previous hypothesis concerning the local structure of turbulence in viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82 (1962).

[2] Frisch, U., Sulem, P-L., Nelkin, M., A simple dynamical model of inetrmittent fully developed turbulence, J. Fluid Mech., 87, 719 (1978).

[3] Benzi, R., Paladin, G., Vulpiani, A., Parisi, G., On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A, 17, 3521 (1984).

[4] Meneveau, C., Sreenivasan, K.R., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59, 1424 (1987).

 [5] Meneveau, C., Sreenivasan, K.R., The multifractal nature of turbulent energy dissipation, J. Fluid Mech., 224, 429 (1991).

[6] W.M. Macek, Modeling multifractality of the solar wind, Space Sci. Rev. 122, 329 (2006).

[7] Anselmet, F., Gagne, Y., Hopfinger, J., Antonia, R.A., High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., 140, 63 (1984).

[8] Marsch, E., Tu, C.-Y., Rosenbauer, H., Multifractal scaling of the kinetic energy flux in solar wind turbulence, Ann. Geophys., 14, 259 (1996).

Electronic form: http://www.cbk.waw.pl/~wawrzasz/ania