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Prologue

A fractal is a rough or fragmented
geometrical object that can be subdivided
in parts, each of which is (at least
approximately) a reduced-size copy of
the whole. Fractals are generally self-
similar and independent of scale (fractal
dimension).

A multifractal is a set of intertwined
fractals. Self-similarity of multifractals
is point dependent (spectrum of
dimensions). A deviation from a
strict self-similarity is also called
intermittency.

Two-scale Cantor set.
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Solar Wind

In the inner heliosphere the solar wind streams are of two forms called the slow
(≈ 400 km s−1) and fast (≈ 700 km s−1). The solar wind most likely originates from
nonlinear processes in the solar corona. The fast wind associated with coronal holes
is relatively uniform and stable, while the slow wind is more turbulent and quite variable.

A schematic model of the solar wind ”ballerina”: the Sun’s two hemispheres are separated
by a neutral layer of a form reminiscent of a ”ballerina’s skirt”, taken from (Schwenn and
Rosenbauer, 1984).
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Importance of Multifractality

The concept of multiscale multifractality is of great importance for space plasmas because
it allows us to look at intermittent turbulence in the solar wind (e.g., Marsch and Tu, 1997;
Bruno et al., 2001). Starting from Richardson’s (1922) scenario of turbulence, many
authors still attempts to recover the observed scaling exponents, using some simple and
more advanced fractal and multifractal phenomenological models of turbulence describing
distribution of the energy flux between cascading eddies at various scales.

In particular, the multifractal spectrum has been investigated using Voyager (magnetic
field fluctuations) data in the outer heliosphere (e.g., Burlaga, 1991, 2001) and using
Helios (plasma) data in the inner heliosphere (e.g., Marsch et al., 1996; Macek and
Szczepaniak, 2008). We have also analysed the multifractal spectrum directly on the solar
wind attractor and have shown that it is consistent with that for the multifractal measure
of a two-scale weighted Cantor set (Macek, 2007).

The multifractal scaling has also been tested using Ulysses observations (Horbury et
al., 1997) and with Advanced Composition Explorer (ACE) and WIND data (e.g., Hnat et
al., 2003; Kiyani et al., 2007; Szczepaniak and Macek, 2008).
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Recently, to quantify scaling of solar wind turbulence, we also consider the
generalized Cantor set with two different scales describing nonuniform distribution of
the kinetic energy flux between cascading eddies of various sizes. We investigate the
multifractal spectra depending on two rescaling parameters and one probability measure
parameter (Macek and Szczepaniak, 2008).

We demonstrate that the universal shape of the multifractal spectrum resulting from
the multiscale nature of the cascade is often rather asymmetric. Moreover, we observe
the evolution of multifractal scaling of the solar wind in the inner and outer heliosphere
(Macek and Wawrzaszek, 2009).

It is worth noting that for the model with two different scaling parameters a better
agreement with the solar wind data is obtained, especially for the negative index of the
generalized dimensions. Hence we hope that this somewhat more general model could
be a useful tool for analysis of the intermittent turbulence in space plasmas.
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Turbulence Cascade

Fig. 1. Schematics of binomial multiplicative processes of cascading eddies. A large
eddy of size L is divided into two smaller not necessarily equal pieces of size l1 and
l2. Both pieces may have different probability measures, as indicated by the different
shading. At the n-th stage we have 2n various eddies. The processes continue until the
Kolmogorov scale is reached (Meneveau and Sreenivasan, 1991; Macek et al., 2009).
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Methods of Data Analysis

Energy Transfer Rate and Probability Measures

In the inertial range (η� l� L)

εl ∼
|u(x+ l)−u(x)|3

l
µi =

εl

〈εL〉
(1)

where u(x) and u(x + l) are velocity components parallel to the longitudinal direction
separated from a position x by a distance l.

To each ith eddy of size l in turbulence cascade (i = 1, . . . ,N = 2n) we associate a
probability measure

pi(l) =
εi(l)

∑
N
i=1 εi(l)

(2)

This quantity can roughly be interpreted as a probability that the energy is transferred to
an eddy of size l = vswt.

As usual the time-lags can be interpreted as longitudinal separations, x = vswt
(Taylor’s hypothesis).
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Fig. 1. The multifractal measure µ = ε/〈εL〉 on the unit interval for (a) the usual one-
scale p-model (Meneveau and Sreenivasan, 1987) and (b) the generalized two-scale
cascade model. Intermittent pulses are stronger for the model with two different scaling
parameters (Macek and Szczepaniak, 2008).
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Generalized Scaling Property

The generalized dimensions are important characteristics of complex dynamical systems;
they quantify multifractality of a given system (Ott, 1993). In the case of turbulence
cascade these generalized measures are related to inhomogeneity with which the energy
is distributed between different eddies (Meneveau and Sreenivasan, 1991). In this way
they provide information about dynamics of multiplicative process of cascading eddies.
Here high positive values of q > 1 emphasize regions of intense energy transfer rate,
while negative values of q accentuate low-transfer rate regions (cf. Chhabra et al. 1989).

Using (∑ pi
q ≡ 〈pi

q−1〉av) a generalized average probability measure of cascading eddies

µ̄(q, l)≡ q−1
√
〈(pi)q−1〉av (3)

we can identify Dq as scaling of the measure with size l

µ̄(q, l) ∝ lDq (4)

Hence, the slopes of the logarithm of µ̄(q, l) of Eq. (4) versus log l (normalized) provides

Dq = lim
l→0

log µ̄(q, l)
log l

(5)
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Measures and Multifractality

Similarly, we define a one-parameter q family of (normalized) generalized pseudoprobability
measures (Chhabra and Jensen, 1989; Chhabra et al., 1989)

µi(q, l)≡ pq
i (l)

∑
N
i=1 pq

i (l)
(6)

Now, with an associated fractal dimension index fi(q, l) ≡ logµi(q, l)/ log l for a given
q the multifractal singularity spectrum of dimensions is defined directly as the averages
taken with respect to the measure µ(q, l) in Eq. (6) denoted from here on by 〈. . .〉

f (q) ≡ lim
l→0

N

∑
i=1

µi(q, l) fi(q, l) = lim
l→0

〈logµi(q, l)〉
log(l)

(7)

and the corresponding average value of the singularity strength is given by
(Chhabra and Jensen, 1987)

α(q) ≡ lim
l→0

N

∑
i=1

µi(q, l) αi(l) = lim
l→0

〈log pi(l)〉
log(l)

. (8)
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Mutifractal Models for Turbulence

Fig. 1. Generalized two-scale Cantor set model for turbulence (Macek, 2007).
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Solutions

For the generalized self-similar weighted Cantor set we have for τ(q) ≡ (q − 1)Dq

(Hentschel and Procaccia 1983; Halsey et al., 1986)

Transcendental equation
pq

lτ(q)
1

+
(1− p)q

lτ(q)
2

= 1 (9)

Legendre transformation

α(q) =
d τ(q)

dq
, (10)

f (α) = qα(q)− τ(q). (11)

Parameters:

• probability of providing energy to one eddy is p to the other eddy is 1− p
• l1 + l2 ≤ 1, two rescaling parameters for size of eddies

(for space filling turbulence l1 + l2 = 1).
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For l1 = l2 = s and any q in Eq. (9) one has for the generalized dimensions

τ(q)≡ (q−1)Dq =
ln[pq +(1− p)q]

ln s
. (12)

Space filling turbulence (s = 1/2):
the multifractal cascade p−model for fully developed turbulence,
the generalized weighted Cantor set (Meneveau and Sreenivasan, 1987).
The usual middle one-third Cantor set (without any multifractality):
p = 1/2 and s = 1/3.

The values of parameter p are related to the usual models, which are based on the p-
model of turbulence (e.g., Meneveau and Sreenivasan, 1987).

These values of p obtained are roughly consistent with the fitted value in the literature
both for laboratory and the solar wind turbulence, which is in the range

0.1≤ p≤ 0.3

(e.g., Burlaga, 1991; Carbone, 1993; Carbone and Bruno, 1996; Marsch et al., 1996).
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Degree of Multifractality and Asymmetry

The difference of the maximum and minimum dimension (the least dense and most dense
points in the phase space) is given, e.g., by Macek (2006, 2007)

∆≡ αmax−αmin = D−∞−D∞ =
∣∣∣∣log(1− p)

log l2
− log(p)

log l1

∣∣∣∣. (13)

In the limit p→ 0 this difference rises to infinity (degree of multifractality).

The degree of multifractality ∆ is simply related to the deviation from a simple self-
similarity. That is why ∆ is also a measure of intermittency, which is in contrast to self-
similarity (Frisch, 1995, chapter 8).

Using the value of the strength of singularity α0 at which the singularity spectrum has
its maximum f (α0) = 1 we define a measure of asymmetry by

A≡ α0−αmin

αmax−α0
. (14)
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Helios Spacecraft

Orbits
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Fig. 3. The generalized dimensions Dq as a function of q. The values for one-dimensional
turbulence are calculated for the generalized two-scale (continuous lines) model and the
usual one-scale (dashed lines) p-model and fitted using the vx radial velocity components
(diamonds) for the slow (a) and fast (b) solar wind streams at distances of 0.3 AU and
0.97 AU, correspondingly (Macek and Szczepaniak, 2008).
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Fig. 4. The singularity spectrum f (α) as a function of α.. The values for one-dimensional
turbulence are calculated for the generalized two-scale (continuous lines) model and the
usual one-scale (dashed lines) p-model and fitted using the vx radial velocity components
(diamonds) for the slow (a) and fast (b) solar wind streams at distances of 0.3 AU and
0.97 AU, correspondingly (Macek and Szczepaniak, 2008).
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ACE Spacecraft

2006 Days 172-176
2006 Days 354-358
2001 Days 191-195
2001 Days 273-277
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Fig. 2. The normalized transfer rate of the energy flux p(t) = εi(t) / ∑εi(t) obtained using
data of the u = vx velocity components measured by ACE at 1 AU for the slow (a) and
(c) and fast (b) and (d) solar wind during solar minimum (2006) and maximum (2001),
correspondingly (Macek et al., 2009).
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Fig. 4. The generalized dimensions Dq as a function of q. The values obtained for one-
dimensional turbulence are calculated for the usual one-scale (dashed lines) p-model and
the generalized two-scale (continuous lines) model (Macek et al., 2009).
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Fig. 7. The singularity spectrum f (α) as a function of α. The values obtained for one-
dimensional turbulence are calculated for the usual one-scale (dashed lines) p-model and
the generalized two-scale (continuous lines) model (Macek, 2009).
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Table 1: Degree of multifractality ∆ and asymmetry A for solar wind data in
the inner heliosphere (1 AU) during solar minimum and maximum.

Slow Solar Wind Fast Solar Wind
Solar Minimum ∆ = 1.22,A = 2.21 ∆ = 2.56,A = 0.95
Solar Maximum ∆ = 1.60,A = 1.33 ∆ = 2.31,A = 1.25
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Voyager Spacecraft

2.5 AU (1978)
25 AU (1987-1988)
85 AU (1996-1997)
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Fig. 2. The normalized transfer rate of the energy flux p(t) = εi(t) / ∑εi(t) obtained using
data of the vx velocity components measured by Voyager 2 during solar minimum (1978,
1987–1988, 1996–1997) at 2.5, 25, and 50 AU for the slow (a), (c), and (e) and fast (b),
(d), and (f) solar wind, correspondingly (Macek and Wawrzaszek, 2009).
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Fig. 4. The generalized dimensions Dq for the one-scale p-model (dashed) and the
generalized two-scale (continuous lines) model (Macek and Wawrzaszek, 2009).
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Fig. 7. The singularity spectrum f (α) for the one-scale p-model (dashed) and the
generalized two-scale (continuous lines) model (Macek and Wawrzaszek, 2009).
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Table 2: Degree of multifractality ∆ and asymmetry A for solar wind data in
the outer heliosphere during solar minimum.

Heliospheric distance (year) Slow Solar Wind Fast Solar Wind
2.5 AU (1978) ∆ = 1.95,A = 0.91 ∆ = 2.12,A = 1.54
25 AU (1987-1988) ∆ = 2.02,A = 0.98 ∆ = 2.93,A = 0.66
50 AU (1996-1997) ∆ = 2.10,A = 1.14 ∆ = 1.94,A = 0.95
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Conclusions

• We have studied the inhomogeneous rate of the transfer of the energy flux indicating
multifractal and intermittent behavior of solar wind turbulence in the inner and outer
heliosphere.

• Basically, the generalized dimensions for solar wind are consistent with the
generalized p-model for both positive and negative q, but rather with different scaling
parameters for sizes of eddies, while the usual p-model can only reproduce the
spectrum for q ≥ 0. We have demonstrated that a much better agreement of the two-
scale model with the real data is obtained, especially for q < 0.

• It is worth noting that the multifractal scaling is often rather asymmetric. In particular,
the fast wind during solar minimum exhibits strong asymmetric scaling (Helios, ACE,
and Voyager).

• We have also shown that intermittent pulses are stronger for the model with
asymmetric scaling.
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• The degree of multifractality for the solar wind during solar minimum is greater for fast
streams than that for the slow streams (Helios, ACE, and Voyager).

• As the solar activity increases the slow solar wind becomes somewhat more
multifractal, and the fast wind is slightly less multifractal. On the other hand, it seems
that the degree of asymmetry of the dimension spectrum for the slow wind is rather
weakly correlated with the phase of the solar activity (ACE).

• Both the degree of multifractality and degree of asymmetry are correlated with the
heliospheric distance and we observe the evolution of multifractal scaling in the outer
heliosphere (Helios and Voyager).

• In general, the proposed generalized two-scale weighted Cantor set model should
also be valid for non space filling turbulence. Therefore we propose this new cascade
model describing intermittent energy transfer for analysis of turbulence in various
environments.

• Our results provide supporting evidence for multifractal structure of the solar wind in
the inner heliosphere. One can expect the fluctuations in the solar wind plasma should
contain information about the dynamic variations of the coronal streamers.

• The multifractal structures, convected by the solar wind, might probably be related to
the complex topology shown by the magnetic field at the source regions of the solar
wind. It is also possible that it represents a structure of the time sequence of near-Sun
coronal fine-stream tubes (see, Macek, 1998, 2006, 2007), and references therein.
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Epilogue

Within the complex dynamics of the solar
wind’s fluctuating intermittent plasma
parameters, there is a detectable, hidden
order described by a generalized Cantor
set that exhibits a multifractal structure.

This means that the observed
intermittent behavior of the solar
wind’s velocity and Alfvénic fluctuations
results from intrinsic nonlinear dynamics
rather than from random external forces.

Thank you!
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