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Objective

The aim of the tutorial is to give students an introduction to the new developments
in nonlinear dynamics and fractals. Based on intuition rather than mathematical proofs,
emphasis will be on the basic concepts of fractals, stability, nonlinear dynamics, leading
to strange attractors, deterministic chaos, bifurcations, and intermittency. The specific
exercises will also include applications to intermittent turbulence in various environments.
On successful completion of this brief tutorial, students should understand and apply the
fractal models to real systems and be able to evaluate the importance of nonlinearity and
multifractality, with possible applications to physics, astrophysics and space physics, and
possibly chemistry, biology, and even economy.
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Plan of the Tutorial
1. Introduction

• Dynamical and Geometrical View of the World
• Fractals
• Stability of Linear Systems

2. Nonlinear Dynamics

• Attracting and Stable Fixed Points
• Nonlinear Systems: Pendulum

3. Fractals and Chaos

• Strange Attractors and Deterministic Chaos
• Bifurcations
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4. Multifractals

• Intermittent Turbulence
• Weighted Two-Scale Cantors Set
• Multifractals Analysis of Turbulence

5. Applications and Conclusions

• Importance of Being Nonlinear
• Importance of Multifractality
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Fractals

A fractal is a rough or
fragmented geometrical object
that can be subdivided in
parts, each of which is (at least
approximately) a reduced-size
copy of the whole.

Fractals are generally self-
similar and independent of
scale (fractal dimension).
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If Nn is the number of elements of
size rn needed to cover a set (C is a
constant) is:

Nn =
C

rn
D , (1)

then in case of self-similar sets:
Nn+1 =C/(rn+1)

D,
and hence the fractal similarity
dimension D is

D = ln(Nn+1/Nn)/ ln(rn/rn+1). (2)

• Cantor set D = ln2/ ln3
• Koch curve D = ln4/ ln3
• Sierpinski carpet D = ln8/ ln3
• Mengor sponge D = ln20/ ln3
• Fractal cube D = ln6/ ln2
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Stability of Linear Systems

Two-Dimensional System(
ẋ
ẏ

)
=

(
a 0
0 −1

)(
x
y

)
Solutions

x(t) = xoe
at

y(t) = yoe
−t
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Attracting and Stable Fixed Points
We consider a fixed point x∗ of a system ẋ = F(x), where F(x∗) = 0.

We say that x∗ is attracting if there is a δ > 0 such that lim
t→∞

x(t) = x∗

whenever |x(0)− x∗‖ < δ: any trajectory that starts within a distance δ of x∗ is
guaranteed to converge to x∗.

A fixed point x∗ is Lyapunov stable if for each ε > 0 there is a δ > 0
such that ‖x(t) − x∗‖ < ε whenever t ≥ 0 and ‖x(0) − x∗‖ < δ : all
trajectories that start within δ of x∗ remain within ε of x∗ for all positive time.
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Nonlinear Systems: Pendulum
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Attractors

An ATTRACTOR is a closed set A with the properties:

1. A is an INVARIANT SET:
any trajectory x(t) that start in A stays in A for ALL time t.

2. A ATTRACTS AN OPEN SET OF INITIAL CONDITIONS:
there is an open set U containing A (⊂U) such that if x(0) ∈U , then the
distance from x(t) to A tends to zero as t→ ∞.

3. A is MINIMAL:
there is NO proper subset of A that satisfies conditions 1 and 2.

STRANGE ATTRACTOR is an attracting set that is a fractal: has zero
measure in the embedding phase space and has FRACTAL dimension.
Trajectories within a strange attractor appear to skip around randomly.

Dynamics on CHAOTIC ATTRACTOR exhibits sensitive (exponential)
dependence on initial conditions (the ’butterfly’ effect).
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Deterministic Chaos
CHAOS (χαoς) is

• NON-PERIODIC long-term behavior
• in a DETERMINISTIC system
• that exhibits SENSITIVITY TO INITIAL CONDITIONS.

We say that a bounded solution x(t) of a given dynamical system is
SENSITIVE TO INITIAL CONDITIONS if there is a finite fixed distance r > 0
such that for any neighborhood ‖∆x(0)‖ < δ, where δ > 0, there exists (at
least one) other solution x(t) + ∆x(t) for which for some time t ≥ 0 we have
‖∆x(t)‖ ≥ r.

There is a fixed distance r such that no matter how precisely one specify
an initial state there is a nearby state (at least one) that gets a distance r
away.

Given x(t) = {x1(t), . . . ,xn(t)} any positive finite value of Lyapunov

exponents λk = lim
t→∞

1
t

ln
∣∣∣∆xk(t)
∆xk(0)

∣∣∣, where k = 1, . . .n, implies chaos.
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Types of Bifurcations
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Bifurcation Diagram for the Logistic Map
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Intermittency
In dynamical systems theory: occurrence of a signal that alternates
randomly between long periods of regular behavior and relatively short
irregular bursts. In other words, motion in intermittent dynamical system is
nearly periodic with occasional irregular bursts.

Pomeau & Manneville, 1980
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Intermittent Behavior
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Bifurcation and Intermittency
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Fractals and Multifractals

A fractal is a rough or fragmented
geometrical object that can be subdivided
in parts, each of which is (at least
approximately) a reduced-size copy of
the whole. Fractals are generally self-
similar and independent of scale (fractal
dimension).

A multifractal is a set of intertwined
fractals. Self-similarity of multifractals
is scale dependent (spectrum of
dimensions). A deviation from a
strict self-similarity is also called
intermittency. Two-scale Cantor set.
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Fractal

A measure (volume) V of a set as a
function of size l

V (l)∼ lDF

The number of elements of size l
needed to cover the set

N(l)∼ l−DF

The fractal dimension

DF = lim
l→0

lnN(l)
ln1/l

Multifractal

A (probability) measure versus
singularity strength, α

pi(l) ∝ lαi

The number of elements in a small
range from α to α + dα

Nl(α)∼ l− f (α)

The multifractal singularity spectrum

f (α) = lim
ε→0

lim
l→0

ln[Nl(α+ ε)−Nl(α− ε)]

ln1/l

The generalized dimension

Dq =
1

q−1
lim
l→0

ln∑
N
i=1(pi)

q

ln l
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Multifractal Characteristics

Fig. 1. (a) The generalized dimensions Dq as a function of any real q, −∞ < q < ∞,
and (b) the singularity multifractal spectrum f (α) versus the singularity strength α with
some general properties: (1) the maximum value of f (α) is D0; (2) f (D1) = D1; and (3)
the line joining the origin to the point on the f (α) curve where α = D1 is tangent to the
curve (Ott et al., 1994).
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Generalized Scaling Property

The generalized dimensions are important characteristics of complex
dynamical systems; they quantify multifractality of a given system (Ott,
1993).

Using (∑ pi
q ≡ 〈pi

q−1〉av) a generalized average probability measure of
cascading eddies

µ̄(q, l)≡ q−1
√
〈(pi)q−1〉av (3)

we can identify Dq as scaling of the measure with size l

µ̄(q, l) ∝ lDq (4)

Hence, the slopes of the logarithm of µ̄(q, l) of Eq. (4) versus log l
(normalized) provides

Dq = lim
l→0

log µ̄(q, l)
log l

(5)
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Measures and Multifractality

Similarly, we define a one-parameter q family of (normalized) generalized
pseudoprobability measures (Chhabra and Jensen, 1989; Chhabra et al., 1989)

µi(q, l)≡
pq

i (l)

∑
N
i=1 pq

i (l)
(6)

Now, with an associated fractal dimension index fi(q, l) ≡ logµi(q, l)/ log l for a given
q the multifractal spectrum of dimensions is defined directly as the averages taken with
respect to the measure µ(q, l) in Eq. (6) denoted by 〈. . .〉

f (q) ≡ lim
l→0

N

∑
i=1

µi(q, l) fi(q, l) = lim
l→0

〈logµi(q, l)〉
log(l)

(7)

and the corresponding average value of the singularity strength is given by
(Chhabra and Jensen, 1987)

α(q) ≡ lim
l→0

N

∑
i=1

µi(q, l) αi(l) = lim
l→0

〈log pi(l)〉
log(l)

. (8)
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Turbulence Cascade

Fig. 1. Schematics of binomial multiplicative processes of cascading eddies. A large
eddy of size L is divided into two smaller not necessarily equal pieces of size l1 and
l2. Both pieces may have different probability measures, as indicated by the different
shading. At the n-th stage we have 2n various eddies. The processes continue until the
Kolmogorov scale is reached (Meneveau and Sreenivasan, 1991; Macek, 2012).
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In the case of turbulence cascade these generalized measures are related to
inhomogeneity with which the energy is distributed between different eddies (Meneveau
and Sreenivasan, 1991). In this way they provide information about dynamics of
multiplicative process of cascading eddies. Here high positive values of q > 1 emphasize
regions of intense fluctuations larger than the average, while negative values of q
accentuate fluctuations lower than the average (cf. Burlaga 1995).

Mamaia, September 2015 25



Methods of Data Analysis

Structure Functions Scaling

In the inertial range (η� l � L) the averaged standard qth order (q > 0)
structure function is scaling with a scaling exponent ξ(q) as

Sq
u(l) = 〈|u(x+ l)−u(x)|q〉av ∝ lξ(q) (9)

where u(x) and u(x+ l) are velocity components parallel to the longitudinal
direction separated from a position x by a distance l.

The existence of an inertial range for the experimental data is discussed
by Horbury et al. (1997), Carbone (1994), and Szczepaniak and Macek
(2008).
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Energy Transfer Rate and Probability Measures

ε(x, l)∼ |u(x+ l)−u(x)|3

l
, (10)

To each ith eddy of size l in turbulence cascade (i = 1, . . . ,N = 2n) we
associate a probability measure

p(xi, l)≡
ε(xi, l)

∑
N
i=1 ε(xi, l)

= pi(l). (11)

This quantity can roughly be interpreted as a probability that the energy is
transferred to an eddy of size l = υswt.

As usual the time-lags can be interpreted as longitudinal separations, x =
υswt (Taylor’s hypothesis).

Mamaia, September 2015 27



Magnetic Field Strength Fluctuations and Generalized Measures

Given the normalized time series B(ti), where i = 1, . . . ,N = 2n (we take n =
8), to each interval of temporal scale ∆t (using ∆t = 2k, with k = 0,1, . . . ,n)
we associate some probability measure

p(x j, l)≡
1
N

j∆t

∑
i=1+( j−1)∆t

B(ti) = p j(l), (12)

where j = 2n−k, i.e., calculated by using the successive (daily) average
values 〈B(ti,∆t)〉 of B(ti) between ti and ti +∆t. At a position υsw, at time t,
where υsw is the average solar wind speed, this quantity can be interpreted
as a probability that the magnetic flux is transferred to a segment of a
spatial scale l = υsw∆t (Taylor’s hypothesis).

The average value of the qth moment of the magnetic field strength B
should scale as

〈Bq(l)〉 ∼ lγ(q), (13)
with the exponent γ(q) = (q−1)(Dq−1) as shown by Burlaga et al. (1995).
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Mutifractal Models for Turbulence

Fig. 1. Generalized two-scale Cantor set model for turbulence (Macek, 2007).
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Degree of Multifractality and Asymmetry

The difference of the maximum and minimum dimension (the least dense and most dense
points in the phase space) is given, e.g., by Macek (2006, 2007)

∆≡ αmax−αmin = D−∞−D∞ =

∣∣∣∣log(1− p)
log l2

− log(p)
log l1

∣∣∣∣. (14)

In the limit p→ 0 this difference rises to infinity (degree of multifractality).

The degree of multifractality ∆ is simply related to the deviation from a simple self-
similarity. That is why ∆ is also a measure of intermittency, which is in contrast to self-
similarity (Frisch, 1995, chapter 8).

Using the value of the strength of singularity α0 at which the singularity spectrum has
its maximum f (α0) = 1 we define a measure of asymmetry by

A≡ α0−αmin

αmax−α0
. (15)
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Importance of Multifractality

Starting from seminal works of Kolmogorov (1941) and Kraichnan (1965)
many authors have attempted to recover the observed scaling exponents,
using multifractal phenomenological models of turbulence describing
distribution of the energy flux between cascading eddies at various scales
(Meneveau and Sreenivasan, 1987, Carbone, 1993, Frisch, 1995).

The concept of multiscale multifractality is of great importance for space
plasmas because it allows us to look at intermittent turbulence in the solar
wind. In particular, the multifractal spectrum has been investigated and
using Helios (plasma) data in the inner heliosphere (e.g., Marsch et al.),
Voyager (magnetic field fluctuations) data in the outer heliosphere (e.g.,
Burlaga, 1991, 1995, 2001; Burlaga and Ness, 2010, 2014; Burlaga et al.,
1993, 2003, 2006, 2007, 2013, 2015).
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We have first analysed the multifractal spectrum directly on the solar wind
attractor and have shown that it is consistent with that for the multifractal
measure of a two-scale weighted Cantor set (Macek, 2007).

Next, we have analysed solar wind plasma with frozen-in magnetic
field based on data acquired during space missions onboard various
spacecraft, such as Helios (Macek and Szczepaniak, 2008), Advanced
Composition Explorer (Szczepaniak and Macek, 2008), Ulysses
(Wawrzaszek and Macek, 2010), and Voyager (Macek and Wawrzaszek,
2009), exploring different regions of the heliosphere during solar minimum
and maximum.

Recently, we have looked at the fluctuations of the interplanetary
magnetic fields observed by both Voyager 1 and 2 spacecraft in the outer
heliosphere and the heliosheath (Macek et al., 2011, 2012), i.e., after
crossing the heliospheric termination heliospheric shock at 94 and 84
AU (in 2004 and 2007, respectively), and finally at 122 AU (2012) the
heliopause (Macek et al., 2014), which is the last boundary separating
the heliospheric plasma from the local interstellar plasma.
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Conclusions

• Fractal structure can describe complex shapes in the real word.

• Nonlinear systems exhibit complex phenomena, including bifurcation,
intermittency, and chaos.

• Strange chaotic attractors have fractal structure and are sensitive to
initial conditions.

• Within the complex dynamics of the fluctuating intermittent parameters
of turbulent media there is a detectable, hidden order described by a
generalized Cantor set that exhibits a multifractal structure.
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