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Influence of dynamical noise on time series generated by nonlinear maps
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Abstract

We consider periodic and chaotic dynamics of discrete nonlinear maps in the presence of dynamical noise. We show that dynamical noise
corrupting dynamics of a nonlinear map may be considered as a measurement “pseudonoise” with the distribution determined by the Jacobian of
the map. The formula for the distribution of the measurement “pseudonoise” for one-dimensional quadratic maps has also been obtained in an
explicit form. We expect that our results apply to an arbitrary distribution of low-level dynamical noise and hope that these results could help to
find a universal method of discriminating dynamical from measurement noise.
c© 2008 Published by Elsevier B.V.
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1. Introduction

Developing a model of a real physical dynamical system
and comparing the results of the modelling with a measured
signal, we always observe departures of the model from the
real dynamics. These departures are caused by two reasons.
First, during a measurement process some contaminations can
be superimposed on the real signal. We assume that these
contaminations do not change dynamics of the system, but
rather result from imperfections of the measurement process.
Therefore, this kind of contamination is called measurement
noise. However, noise can enter dynamics in a more complex
way. Namely, the applied deterministic model of the dynamics
could be inexact and the system could rather evolve according
to a rule consisting of combined deterministic and stochastic
components. This kind of contaminations is called dynamical
noise. Dynamical noise usually represents an intrinsic random
process being superimposed on deterministic dynamics. Such
a situation may appear, e.g. when we have a real physical
system, for which a low-dimensional model is a quite good
approximation, but random (i.e. high-dimensional) forces
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perturb the dynamics causing some deviations from pure low-
dimensional evolution. This effect may occur, e.g. in chaotic
flow of a fluid, where low-dimensional temporal evolution may
be corrupted by effects related to the lack of perfect spatial
coherence in the system.

Measurement noise is a relatively simple case to work
with, even for such complex time series as those generated by
chaotic dynamical systems. It is possible to estimate noise level
for measurement noise (see, e.g. the algorithms described in
Refs. [1–4] and references therein) and perform considerable
noise reduction [5–7]. On the contrary, dynamical noise is
a much more difficult case, mainly because this kind of
contamination is strongly involved in nonlinear dynamics of
the systems. It is still possible to estimate noise level for
chaotic time series contaminated by dynamical noise (see
Refs. [4,8]), but the question of noise reduction is rather poorly
understood [9]. The issue of influence of dynamical noise on
dynamics of discrete maps or ordinary differential equations
has been investigated in Refs. [10–14]. In particular, an
interesting technique of reconstructing the Langevin equation
from data has been also proposed [15,16].

In this paper we focus on the question of dynamical
noise representing uncorrelated random forces affecting low-
dimensional dynamics given by deterministic maps. Our
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goal is to provide a theoretical basis for analysis of the
influence of dynamical noise on time series generated by
the maps. This paper is an extension of Ref. [8], where
a method of estimation of noise level and discrimination
of dynamical from measurement noise has been proposed
for a time series generated by chaotic discrete maps. The
method is based on the observation that dynamical noise, when
considered as measurement “pseudonoise”, exhibits departures
from Gaussian behaviour toward the Cauchy distribution. This
effect leads to statistically significant differences, e.g. in scaling
properties of the correlation entropy, which can be used for
discriminating measurement from dynamical noise for chaotic
time series. In this paper we try to explain the mechanism
of generation of the specific distribution of the measurement
“pseudonoise” for time series originated from chaotic maps
corrupted by dynamical noise.

In Section 2 we present results of theoretical analysis of
the influence of dynamical noise on one-dimensional maps.
In Section 3 the results are generalized to the case of d-
dimensional maps. Our considerations are then verified in
Section 4 using several examples of time series generated by
both periodic and chaotic maps. Finally, we briefly summarize
our results in Section 5.

2. Influence of dynamical noise on one-dimensional maps

In the literature devoted to the problem of dynamical noise
corrupting dynamics of discrete maps of the form

xn+1 = f (xn), (1)

we can find the following two models of the influence of
dynamical noise on dynamics of the maps:

yn+1 = f (yn) + ηn (2)

and

zn+1 = f (zn + ηn), (3)

where ηn is a noise term corrupting the clean dynamics
described by Eq. (1). We assume here that from the point
of view of analysis of time series generated by discrete
maps, dynamical noise may be considered as the measurement
“pseudonoise”. Let us now find the difference between the
models of Eqs. (2) and (3) as seen from this point of view.

Let us write step-by-step iterations of the noisy map of Eq.
(2), assuming that dynamical noise results in the measurement
“pseudonoise” affecting time series generated by the maps:

x1 + η0 = f (x0) + η0,

x2 + ε2 + η1 = f (x1 + η0) + η1,

x3 + ε3 + η2 = f (x2 + ε2 + η1) + η2,

...

xn+1 + εn+1 + ηn = f (xn + εn + ηn−1) + ηn .

(4)

Here xn is a time series generated by the clean map (1), ηn
is a noise term corrupting the map, and εn+1 is an additional
noise term resulting from the fact that in the case of noisy map
the function f operates on the perturbed state of the system.
Therefore, for Eq. (2) we have (n ≥ 2)

xn+1 + εn+1 + ηn = f (xn + εn + ηn−1) + ηn (5)

and similarly for Eq. (3)

xn+1 + εn+1 = f (xn + εn + ηn). (6)

Eqs. (5) and (6) remain valid even when the function f is
nonlinear, because we do not impose any specific form on
εn+1. Assuming that the noise level (standard deviation of ηn)
is small, one may use the Taylor expansion limited to the
derivative of the first order to obtain

xn+1 + εn+1 + ηn = f (xn) + f ′(xn)(εn + ηn−1) + ηn (7)

and

xn+1 + εn+1 = f (xn) + f ′(xn)(εn + ηn) (8)

as appropriate approximations of Eqs. (5) and (6), respectively.
Now, we can expect that it is possible to extract a stochastic
process (denoted by ε̂n) satisfying the following condition

ε̂n+1 = f ′(xn)(ε̂n + ηn), (9)

which should reproduce statistical properties of the stochastic
process εn involved in Eqs. (7) and (8).

The process εn determines the behaviour of the measure-
ment “pseudonoise” for a given map. Admittedly, direct inves-
tigations of this process are not possible when it is involved in
chaotic dynamics of a map, because it requires a good method
of finding the clean trajectory for chaotic dynamics corrupted
by dynamical noise. However, having the stochastic process
isolated in the form given by Eq. (9), we can easily examine
its statistical properties.

Eqs. (7) and (8) reveal a basic difference between noisy
time series generated by the models of Eqs. (2) and (3).
Namely, in the case of the model of Eq. (2), the distribution of
measurement “pseudonoise” is determined as the distribution
of random variable being the sum of the variables εn+1 and
ηn . Whereas for the model of Eq. (3), the distribution of
measurement “pseudonoise” is determined as the distribution
of only one random variable εn+1. In both cases, properties of
the random variable εn seem to be crucial for understanding the
behaviour of measurement “pseudonoise” contaminating time
series generated by nonlinear maps. We expect that statistical
properties of εn can be revealed by analysis of the isolated
stochastic process ε̂n described by Eq. (9).

Some comments are necessary here. The stochastic process
of Eq. (9) naturally appears as involved in dynamical noise
contaminated dynamics of a discrete map (see Eq. (5) or (6)).
But when we isolate the process as it is shown in Eq. (9),
it has such a character that a sequence of values of | f ′(xn)|

larger then one can cause infinite growth of ε̂n with increasing
n. Therefore, to avoid such a situation, iterating directly the
isolated process described by Eq. (9), we need to use rescaled
values of f ′(xn), so that the maximal value of s| f ′(xn)| will be
less or equal to one (s is here a scaling factor).

To examine the distribution of the measurement “pseudono-
ise”, we first consider the process of Eq. (9) for the case of
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the map of period one, i.e. for steady states of these maps.
Because in this situation for the clean dynamics we have x∗

=

f (x∗), then for the noisy dynamics the points xn are spread
over a neighbourhood of x∗. Therefore, one may expect that
in this case the value of f ′(xn) is approximately constant, i.e.
f ′(xn) ≈ f ′(x∗). In this situation Eq. (9) can be reduced to
ε̂n+1 = c (ε̂n + ηn), where c = f ′(x∗) is a constant. Therefore,
using the central limit theorem we can conclude that in this case
ε̂n follows the Gaussian distribution

1

σg
√

2π
exp

[
−

ε2

2σ 2
g

]
, (10)

irrespective of the distribution of ηn . The standard deviation of
the Gaussian distribution is proportional to |c|. We use here
two assumptions. First, we assume that f ′(x) is smooth and
does not vary too much in the neighbourhood of x∗. The second
assumption is that the noise level is relatively small and ηn is
limited to a finite range of values. This is a necessary condition,
because otherwise for a large value of ηn a perturbed state of
the dynamical system can jump out of the basin of attraction
of the point x∗, changing completely a given trajectory. Hence
a formal question appears, because if ηn is, e.g. Gaussian
distributed then there is no limit on the values of ηn and every
trajectory of infinite length ultimately jumps out of the basin
of attraction of the point x∗. Practically, this problem does not
arise as far as noise level is relatively small and we deal with
time series of a finite length.

In the case of a more general situation of a map of period
p corrupted by dynamical noise, its trajectory goes in cycles
through neighbourhoods of points x∗i (i = 1, . . . , p) and at
every i-th point of the cycle the value of c∗i

= f ′(x∗i ) is
different in general. The time series generated by such a map
can be considered as comprised of p groups of time series. Time
series representing i-th group have properties similar to the case
of the map of period one, i.e. the distribution of ε̂n is determined
by a reduced version of Eq. (9), namely ε̂n+1 = c∗i (ε̂n + ηn),
which means that for a given i , ε̂n is Gaussian distributed
(irrespective of the distribution of ηn , as it was argued earlier for
the case of the map of period one) with the standard deviation
proportional to |c∗i

|. Therefore, for time series generated by
periodic maps of period p contaminated by dynamical noise,
ε̂n follows the distribution

gp(ε̂) =

p∑
i=1

g∗i
p (ε̂) =

p∑
i=1

1

σi
√

2π
exp

[
−

ε̂2

2σ 2
i

]
, (11)

where σi = |c∗i
|ση, and ση is the standard deviation of

ηn . Obviously, also in the case of the map of period p, the
conclusions should be valid providing that noise level is small
and the function f ′(x) is slowly varying in neighbourhoods of
the points x∗i .

When computing some statistical measures, chaotic maps
can be considered as periodic maps of period p → ∞.
Therefore, the conclusions that have been obtained for the
case of periodic map of period p contaminated by dynamical
noise should, in principle, remain valid also for chaotic maps.
However, in the case of chaotic maps, the sum in Eq. (11) must
be replaced by the integral

gc(ε̂) =

∫ xmax

xmin

ρ(x)
1

σ(x)
√

2π
exp

[
−

ε̂2

2σ 2(x)

]
dx . (12)

Here ρ(x) is the invariant density and σ(x) = | f ′(x)|ση,
where ση is the standard deviation of ηn , and xmin and
xmax are correspondingly the minimal and maximal values
of xn determining the range of variability of xn . Obviously,
we assume here that the dynamical noise level ση is
small. Therefore, we can also expect that dynamical noise
contaminating a discrete map does not change substantially
the invariant density of the clean map. In fact, the influence
of dynamical noise results basically in smoothing the invariant
density of the clean map. Hence we can use the invariant density
of the clean map in Eq. (12). Furthermore, because of the
averaging character of Eq. (12), we expect that often to simplify
the calculations, ρ(x) = 1/(xmax − xmin) = const could be a
reasonable approximation, provided that ρ(x) is not correlated
(positively or negatively) with σ(x) = | f ′(x)|ση. However, it
may happen sometimes, that within the interval (xmin, xmax)

the invariant density for the clean map has subintervals where
ρ(x) = 0. In this situation the approximation ρ(x) =

1/(xmax − xmin) is obviously not appropriate for entire interval
(xmin, xmax). In Fig. 1(d) we present a comparison of the
theoretical gc(ε̂) (computed using the approximation ρ(x) =

const) with the distribution obtained by direct iterations of Eq.
(9). One can see that the errors introduced by the approximation
ρ(x) = const are not large.

For quadratic maps we have f ′(x) = ax + b. If we
additionally assume that for simplicity reasons we can use
ρ(x) = 1/(xmax − xmin), then it is possible to find an explicit
formula for the distribution of ε̂n . Namely, for xmin < −b/a <

xmax we have

gc(ε̂) = ±

E1

(
ε̂2

2σ 2(axmin+b)2

)
+ E1

(
ε̂2

2σ 2(axmax+b)2

)
√

8πσa(xmax − xmin)
(13)

and otherwise

gc(ε̂) = ±

E1

(
ε̂2

2σ 2(axmax+b)2

)
− E1

(
ε̂2

2σ 2(axmin+b)2

)
√

8πσa(xmax − xmin)
, (14)

where the signs of the expressions of Eqs. (13) and (14) are
determined by the sign of a, and E1(x) is the exponential
integral Em(x) =

∫
∞

1 exp(−xt)/tmdt taken for m = 1.

3. Generalization to d-dimensional maps

So far we have discussed only the influence of dynamical
noise on one-dimensional discrete maps. Let us now consider a
d-dimensional map

xn+1 = F(xn) (15)

corrupted by dynamical noise. Then Eq. (9) should be replaced
by

en+1 = DF(xn)(en + hn). (16)
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Fig. 1. The distributions (PDF) of the differences between noisy and clean time series for periodic cases of period (a) one (r = 2.9), (b) two (r = 3.4) and (c) three
(r = 3.835) for the logistic map xn+1 = r xn(1− xn) are fitted by (a) Gaussian (GFit), (b) the sum of two Gaussians (2GFit), (c) the sum of three Gaussians (3GFit),
correspondingly. In this numerical experiment we have used dynamical noise of uniform distribution in the range (a) (−0.004, 0.004), (b) (−0.0034, 0.0034), (c)
(−0.0006, 0.0006). Panel (d) shows the comparison of the function of Eq. (13) with the distribution obtained by direct iteration of rescaled version of Eq. (9) for a
chaotic case (r = 3.8) of the logistic map.
Here the vector en corresponds to the scalar ε̂n , the vector hn
corresponds to ηn , and the Jacobian of F(x) at xn is denoted
by DF(xn), where (DF)i j =

∂ Fi
∂x j

. Because of the similarity
of Eqs. (9) and (16) one may expect that the conclusions for
the one-dimensional case should, in principle, be valid also for
the d-dimensional case. Naturally, the formula (16) is a vector
equation and for this reason the d-dimensional case can be
somewhat more complicated.

For example, let us now examine Eq. (16) for the Hénon
map [17]

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn .
(17)

For this case we have(
ex

n+1

ey
n+1

)
=

(
−2axn 1

b 0

)(
ex

n + hx
n

ey
n + hy

n

)
. (18)

Bearing in mind the conclusions obtained for the one-
dimensional case, we can notice that ex

n and ey
n in Eq. (18)

should in general have different distributions. Namely, we can
infer from Eq. (18) that ey

n should be Gaussian distributed
with the standard deviation equal to bσhx , where σhx is the
standard deviation of the x-component of hn . On the other hand,
since the elements of the Jacobian in Eq. (18) determining the
behavior of ex

n are not all constant, therefore for ex
n we expect
some departures of the distribution from Gaussian. In fact, such
a behaviour, i.e. non-Gaussian distribution for ex

n and Gaussian
for ey

n , has been already reported in Ref. [8].

4. Examples

To see how our considerations work in practice, in
this section we illustrate the theoretical considerations with
examples of time series generated by model systems. In
straightforward examination of the distribution of measurement
“pseudonoise”, we subtract clean time series from noisy time
series and analyse the distribution of the differences. Such
a procedure can be easily applied for periodic systems, but
application of such a method for chaotic (aperiodic) systems is
very hard, because of serious difficulties with finding the clean
trajectory for a given noisy trajectory. However, for chaotic
systems one can examine the distribution indirectly, e.g. by
examining the stochastic process of Eq. (9) (or Eq. (16) for the
d-dimensional case) or the scaling properties of the correlation
sum, dimension, or entropy.

The distributions of the differences between noisy time se-
ries xN (corrupted by dynamical noise of uniform distribution)
and clean time series xC for the logistic map xn+1 = r xn(1−xn)

for periodic cases of period one (r = 2.9), two (r = 3.4)
and three (r = 3.835) are shown in Fig. 1(a)–(c). For a com-
prehensive discussion on the dynamics of the logistic map see,
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Fig. 2. The distribution of ε̂n for the logistic map for r = 3.8 obtained by
iteration of the rescaled version of Eq. (9). The computed function (PDF) is
fitted by Gaussian of Eq. (10) (GFit) and Cauchy function of Eq. (19) (CFit).

e.g. [18] or [19] and references therein. One can see that al-
though the distribution of dynamical noise is uniform, the re-
sulting probability distribution functions (PDF) are well ap-
proximated by Gaussian for the case of period one, or the sum
of two and three Gaussians for the cases of periods two and
three. In Fig. 1(a)–(c) one can see some deviations between
probability distributions obtained numerically (points) and the-
oretically (lines). The deviations increase on average with in-
creasing xN − xC, thus in our opinion, they are caused by viola-
tion of assumptions used in derivation of Eq. (9). In Fig. 1(d) we
compare the function of Eq. (13) with the distribution obtained
by direct iteration of rescaled version of Eq. (9) for a chaotic
case (r = 3.8) of the logistic map. The results presented here
for periodic and chaotic cases of the logistic map are in agree-
ment with the conclusions obtained in Section 2, concerning
the distribution of measurement “pseudonoise”. In particular,
we can see that in fact the stochastic process ε̂n of Eq. (9) prop-
erly describes statistical properties of the process εn involved in
Eqs. (7) and (8).

The form of Eqs. (13) and (14) is quite complex, thus
these formulae are rather not suitable for practical purposes.
Admittedly, a function with exponentially decreasing flanks
could be appropriate for the distribution shown in Fig. 1(d).
However, for other cases, the core of the distribution of
measurement “pseudonoise” is much smoother. In Ref. [8] the
Cauchy function

1

σcπ
(

1 +
ε2

σ 2
c

) (19)

has been suggested as an approximation of the distribution of
measurement “pseudonoise”. In Fig. 2 we show the distribution
of ε̂n computed for a chaotic case of the logistic map (r = 3.8)
by direct iteration of Eq. (9). The obtained distribution of ε̂n
is fitted by the Gaussian of Eq. (10) and Cauchy function
of Eq. (19). One can see that the fit by Cauchy function is
much better than the fit by Gaussian, especially in the range
of ε̂ corresponding to the highest values of the probability
distribution function; these values usually determine the
behaviour of computed statistics.

Looking at Fig. 1(d) one can notice that the Cauchy func-
tion can be considered as a suitable approximation of the dis-
tribution obtained by the iteration of Eq. (9). Admittedly, the
shape of the distribution of measurement “pseudonoise” pre-
dicted by Eq. (13) or (14) can change substantially depending
on the parameters a, b, σ, xmin, xmax. In general, it may hap-
pen that the obtained shape will be completely different from
Cauchy-like function. But we have verified that for the logistic
map (in chaotic regime), the shape of the distribution is rather
not very sensitive to the choice of the parameters. However, it
is not possible yet to give a general answer to the question of
whether or not the Cauchy function can be a good approxima-
tion of the distributions of measurement “pseudonoise” given
by Eqs. (13) and (14); it would be rather difficult to speculate
about universality of the Cauchy function approximation.

In Fig. 3 we show the distributions of ex
n and ey

n for a chaotic
case of the Hénon map of Eq. (17) for a = 1.4, b = 0.2,
computed by direct iteration of Eq. (18) and fitted by Gaussian
and Cauchy functions. As can be seen, ex

n is rather not Gaussian
distributed and the fit by Cauchy function is better, whereas ey

n
is apparently well approximated by Gaussian. Such a behaviour,
i.e. non-Gaussian distribution for ex

n and Gaussian distribution
for ey

n has already been reported in Ref. [8], as resulting from
the scaling properties of the correlation entropy for the Hénon
map. Therefore, we can conclude that the results obtained in
Section 3, concerning distributions of ex

n and ey
n for the Hénon

map are correct.
Fig. 3. Distributions of (a) ex
n and (b) ey

n obtained by the iteration of Eq. (18) for the Hénon map. The computed functions (PDF) are fitted by the Gaussian of Eq.
(10) (GFit) and the Cauchy function of Eq. (19) (CFit).
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5. Conclusions

We have shown that if dynamical noise corrupting a
time series generated by a discrete map is considered as
a measurement “pseudonoise”, then the distribution of the
“pseudonoise” is determined by the Jacobian of the map.
When the Jacobian is constant, we may expect Gaussian
distributed “pseudonoise” for one-dimensional maps, whereas
for d-dimensional maps (d ≥ 2), the distribution of the
measurement “pseudonoise” is the distribution of the sum of
at most d random variables, which themselves are Gaussian
distributed (with different standard deviations in general). If
the Jacobian is not constant, we may expect some departures
of the “pseudonoise” distribution from the Gaussian. We
have also obtained an explicit formula for the distribution of
the measurement “pseudonoise” for one-dimensional quadratic
maps. We have shown that the distribution of the measurement
“pseudonoise” is independent of the distribution of dynamical
noise, and thus we expect that the results obtained in this paper
should apply to an arbitrary distribution of dynamical noise.
The results obtained have been verified with several examples
of time series generated by model systems. We hope that our
results could help to find a universal method of distinguishing
dynamical from measurement noise.
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