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We consider the multifractal spectrum of fluctuations of the interplanetary magnetic field strengths

observed by Advanced Composition Explorer at the Earth’s orbit. We have found that the multifractal

scaling of magnetic fields is observed both on small and large scales from minutes to days. The obtained

multifractal spectrum is asymmetric for small scales, in contrast to a rather symmetric spectrum

observed at scales larger than a day. Moreover, we show that the degree of multifractality of the

magnetic fields on large scales is correlated with the solar activity and greater than that at the small

scales, where the magnetic turbulence may become roughly monofractal.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Starting from seminal works of Kolmogorov (1941) and
Kraichnan (1965) many authors have attempted to recover the
observed scaling exponents, using phenomenological multifractal
models of turbulence describing distribution of the energy flux
between cascading eddies at various scales (Meneveau and
Sreenivasan, 1987; Carbone, 1993; Frisch, 1995). In particular,
the multifractal spectrum has been investigated using magnetic
field data measured by Voyager in the outer heliosphere (Burlaga,
1991, 1995, 2001; Burlaga et al., 1993) and using Helios (plasma)
data in the inner heliosphere (Marsch et al., 1996). The multi-
fractal scaling has also been investigated using Ulysses observa-
tions (e.g., Horbury et al., 1997; Horbury, 1999; Horbury and
Balogh, 2001; Wawrzaszek and Macek, 2010) and with Advanced
Composition Explorer (ACE) and WIND data (e.g., Hnat et al., 2003,
2007; Kiyani et al., 2007; Szczepaniak and Macek, 2008). In
addition, the times series of the magnetic field strengths
measured in situ by Voyager 1 spacecraft to very large distances
from the Sun and even in the heliosheath have already been
analysed. It is known that fluctuations of the solar magnetic fields
at large scales from 2 to 16 (32) days may exhibit multifractal
scaling laws (Burlaga, 2004; Burlaga et al., 2006; Macek and
Wawrzaszek, 2010).

To quantify scaling of solar wind turbulence, we have developed
a generalized two-scale weighted Cantor set model using the
ll rights reserved.
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partition technique (Macek, 2007; Macek and Szczepaniak, 2008).
We have already studied the inhomogeneous rate of the transfer of
the energy flux indicating multifractal and intermittent behaviour
of solar wind turbulence in the inner and outer heliosphere using
fluctuations of the velocity of the flow of the solar wind at small
scales. We have investigated the resulting spectrum of generalized
dimensions and the corresponding multifractal singularity spec-
trum depending on one probability measure parameter and two
rescaling parameters (Macek and Szczepaniak, 2008; Szczepaniak
and Macek, 2008; Macek and Wawrzaszek, 2009).

In particular, we have shown that the generalized dimensions
for the solar wind are consistent with the generalized two-scale
weighted Cantor set model for both positive and negative indices
of the generalized dimensions, q (Macek and Szczepaniak, 2008).
In general, given the multiplicative process of cascading eddies,
each breaking into new ones, but not necessarily equal, we
consider two different rescaling parameters for sizes of eddies and
one probability measure parameter, or weight p, at each step of
turbulence cascade. In particular, using one-scale weighted
Cantor set with equal eddies, the usual well-known so-called p

model is recovered, which can only reproduce the spectrum for
qZ0. But we have demonstrated that in this way for the two-
scale model a better agreement with the solar wind velocity data
is obtained. It is worth noting that the multifractal scaling is often
rather asymmetric. Both the degree of multifractality and degree
of asymmetry are correlated with the heliospheric distance and
we observe the evolution of multifractal scaling in the outer
heliosphere (Macek and Wawrzaszek, 2009).

The aim of this study is to examine the question of scaling
properties of intermittent fluctuations of the magnetic field
embedded in the solar wind on both small and large scales using
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our two-scale weighted Cantor set model in comparison with the
simple one-scale multifractal spectrum (Macek and Szczepaniak,
2008). In particular, we show that the degree of multifractality for
fluctuations of the interplanetary magnetic field strengths at
small scales is smaller than that at the large scales. Moreover, we
demonstrate that the multifractal spectrum is asymmetric for
small scale fluctuations, in contrast to the rather symmetric
spectrum observed on large scales. It is worth noting that for the
multifractal two-scale Cantor set model a good agreement with
the data is obtained. Hence we propose this new model as a useful
tool for analysis of intermittent fluctuations of the interplanetary
magnetic field strength on both small and large scales.
2. Solar magnetic field data

In this paper we would like to test the multifractal scaling of
the interplanetary magnetic field strengths, B, for the wealth of
data provided by Advanced Composition Explorer (ACE) mission,
located in the ecliptic plane near the libration point L1, i.e.,
approximately at a distance of R = 1 AU from the Sun. In case of
ACE the sampling time resolution of 16 s for the magnetic field is
much better than that for the Voyager data, which allow us to
investigate the scaling on small scales of the order of minutes.

The calculated energy spectral density as a function of
frequency for the data set of the magnetic field strengths jBj
consisting of about 2 �106 measurements for (a) the whole year
2006 during solar minimum and (b) the whole year 2001 during
solar maximum using the Welch window (40 �1024) is shown in
Fig. 1. The dashed line shows the spectrum of the type Eðf Þpf�5=3

for comparison. As one can see, the spectrum density is roughly
consistent with this well-known power-law at wide range of
frequency, f, suggesting a self-similar fractal turbulence model
often used for looking at scaling properties of plasma fluctua-
tions (e.g., Burlaga and Klein, 1986). However, it is clear that the
spectrum alone, which is based on a second moment (or a
variance), cannot fully describe fluctuations in the solar wind
turbulence (cf. Alexandrova et al., 2007). Admittedly, inter-
mittency, which is deviation from self-similarity (e.g., Frisch,
1995), usually results in non-Gaussian probability distribution
Fig. 1. The logarithm of energy spectral density as a function of frequency for the mag

(a) solar minimum (2006) and (b) solar maximum (2001), correspondingly. The dashe
functions. However, the multifractal powerful method generalizes
these scaling properties by considering not only various moments
of the magnetic field, but also the whole spectrum of scaling
indices (Halsey et al., 1986).

Therefore, here we further analyse time series of the magnetic
field of the solar wind on both small and large scales using
multifractal methods. To investigate scaling properties in fuller
detail, using basic 64-s sampling time for small scales, we have
selected long time intervals of jBj of interpolated samples, each of
218 data points, from day 1 to 194. Similarly, for large scales we
use daily averages of samples from day 1 to 256 of 28 data points.
The data for both small and large scale fluctuations during solar
minimum (2006) and maximum (2001) are shown in Fig. 2.
3. Multifractal model

The generalized dimensions Dq as a function of a continuous
index q are important characteristics of complex dynamical
systems; they quantify multifractality of a given system
(Grassberger, 1983; Grassberger and Procaccia, 1983; Hentschel
and Procaccia, 1983; Halsey et al., 1986; Ott, 1993). In the case of
magnetic field fluctuations these generalized measures are related
to inhomogeneity with which the scaling exponents depend on
various scales. In this way the generalized dimensions provide
information about dynamics of magnetic field turbulence. As
usual in the solar wind a position x in space can be associated
with time t by Taylor’s hypothesis and x = vswt, where vsw is the
average speed of the flow.

Assume a stationary magnetic field B in the equatorial plane
normal to the flow of the solar wind. We like to decompose this
signal into time intervals of size t, corresponding to the spatial
scales l¼ vswt. Then to each time interval can be associated a
magnetic flux past the cross-section perpendicular to the plane
during that time. Namely, a discrete time series, sampled with a
basic time difference Dt, can be normalized so that we have for its
average /BðtiÞS :¼ ð1=NÞ

PN
i ¼ 1 BðtiÞ ¼ 1. Then given the normal-

ized time series B(ti), where i = 1, y, N = 2n, to each interval of
temporal scale t, we associate a measure mðti; tÞ calculated by
using the average values /Bðti; tÞS of B(ti) between ti and tiþt, as
netic field strengths jBj observed by ACE at 1 AU using 16-s sampling time during

d line shows the spectrum of f�5/3 type for comparison.



Fig. 2. The magnetic field strengths jBj as a function of time observed by ACE at 1 AU using 64-s averages on the small scales (a) and (c), and daily averages on large scales

(b) and (d) during solar minimum (2006) and maximum (2001), correspondingly.
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discussed by Burlaga (1995)

mðti; tÞ ¼/Bðti; tÞS
t
N
¼ miðtÞ: ð1Þ

In fact, this (normalized) quantity can be interpreted as a
probability that at time ti the magnetic flux is transferred to a
segment of a temporal size t. In our case we have n = 18 with
Dt¼ 64 s and n=8 with Dt¼ 1 h for small and large scales,
correspondingly.

Naturally, multifractal scaling can be characterized by the
generalized dimensions (l¼ vswt), which are defined for any
continuous index q, �1oqo1, by (e.g., Ott, 1993)

Dq :¼
1

q�1
lim
t-0

log
PN

i ¼ 1 m
q
i ðtÞ

logt : ð2Þ

In particular, high positive values of q emphasize regions of
intense fluctuations larger than the average, while negative values
of q accentuate fluctuations lower than the average. Therefore,
given a time series B(t) it can be argued that in some region the
average value of its q th moment at various times scales t should
scale with the exponent s(q) = (q�1) (Dq�1) as obtained by
Burlaga (1991)

/Bqðt; tÞS� tsðqÞ: ð3Þ

Now, as a one-dimensional phenomenological model of
turbulence let us consider a binomial multiplicative fragmenta-
tion process. Namely, we take a closed unit interval, where the
probability of choosing one closed subinterval of size l1 is p, and
the other subinterval of size l2 is 1�p as considered by Macek
and Szczepaniak (2008), Szczepaniak and Macek (2008) and
Macek and Wawrzaszek (2009). At n-stage of this iterative
process with the weighting parameter p, we have ðnkÞ intervals
each of width tk ¼ ln�k

1 lk2, where k¼ 0;1; . . . ;n, with various asso-
ciated probability measures

mðtkÞ ¼
p

l1

� �n�k 1�p

l2

� �k

: ð4Þ
The resulting set of all 2n closed intervals (more and more narrow
segments of various widths and probabilities) for n-1 becomes
the two-scale weighted Cantor set. Hence in this limit one obtains
Dq by solving numerically the following transcendental equation
(e.g., Ott, 1993)

pq

lgðqÞ1

þ
ð1�pÞq

lgðqÞ2

¼ 1; ð5Þ

where gðqÞ is the scaling exponent related to Dq by gðqÞ � ðq�1ÞDq,
similarly as the exponent s(q) in Eq. (3).

The dependence of the resulting spectrum of the generalized
dimensions Dq for the two-scale weighted Cantor set model has
been thoroughly discussed by Macek and Szczepaniak (2008) and
Macek and Wawrzaszek (2009). It can be proved that this is a
monotonically decreasing function of q, except for a constant
value in case of a monofractal, p=0.5, l1 = l2= 0.5. Therefore, a
degree of multifractality could be defined as D :¼ D�1�D1. Hence
for given two scales the parameter p quantifies multifractality,
D¼ jlogð1�pÞ=logl2�logðpÞ=logl1j (Macek, 2007).

In addition, the singularity multifractal spectrum f ðaÞ ¼ qa�gðqÞ
as a function of the singularity strength a, which is the derivative
of the scaling function, a¼ g0ðqÞ, can also be obtained by using
Legendre transformation (Ott, 1993), or directly from the slopes
or generalized measures (Macek and Wawrzaszek, 2009). Using
a0, where f ða0Þ ¼ 1, we can define a measure of asymmetry
A� ða0�aminÞ=ðamax�a0Þ (Macek and Wawrzaszek, 2009). In
particular, with two equal scales l1 = l2 = 0.5 we have the
symmetric multifractal spectrum, A = 1.
4. Results

For a given q, using the slopes s(q)= (q�1) (Dq� 1) of
log10/BqS versus log10t as given in Eq. (3) one can obtain the
values of Dq according to Eq. (2), which indicate multifractal
scaling behaviour. The results for the generalized dimensions Dq

as a function of q obtained using the ACE data of the magnetic
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field strengths at distances of 1 AU from the Sun for the small (a)
and (c) and large scales (b) and (d) averages during solar
minimum (2006) and maximum (2001), correspondingly, are
presented in Fig. 3. In addition, the multifractal spectrum f ðaÞ as a
function of scaling indices a derived from the ACE observations of
the magnetic field strengths together with the one-scale p model
fit (dashed curve) and the two-scale model (solid curve) is
presented in Fig. 4. We also confirm the characteristic shapes of
both the generalized dimension and the multifractal spectrum, as
seen in Figs. 3 and 4. In fact, one can see that Dq is a decreasing
function of q and the singularity spectrum f ðaÞ is an (upward)
concave function of a, as schematically depicted by, e.g., Ott
(1993, Fig. 9.1). It is worth noting the universal character of
the shape of the function f ðaÞ in multifractal theory. The width of
this function, amax�amin, which is equal to D�1�D1, can be here
identified as the degree of multifractality and intermittency, D
(Macek, 2007; Macek and Wawrzaszek, 2009), which is somehow
related to other measures of intermittency in the literature, e.g.,
flatness and kurtosis (Frisch, 1995; Carbone, 1994; Szczepaniak
and Macek, 2008). The degree of multifractality D and the degree
of asymmetry A are listed in Table 1. As we see, the generalized
two-scale weighted Cantor set model is a convenient tool to
investigate the asymmetry of this function; in a usual one-scale
Cantor set model this function is necessarily symmetric.

For small scales we have identified a scaling region from
� 2 min � 18 h provided by times series from 21 to 210 points
(n¼ 1; . . . ;10 with Dt¼ 64 s), and for large scales from 2 to 16
days (n¼ 1; . . . ;4 for daily averages), correspondingly. The
obtained values in the large scaling region are consistent with
Fig. 3. The generalized dimensions Dq as a function of q. The values are derived from the

(c) and large scale (b) and (d) averages during solar minimum (2006) and maximum (2

p-model and the generalized two-scale (continuous lines) model.
those calculated by Burlaga (2004). We also see that the fit to
the generalized two-scale weighted Cantor set model according to
Eq. (5) with p = 0.03 or p = 0.08 together with unequal two scales
l1 = 0.02 and l2 = 0.98 or l1 = 0.10 and l2 = 0.90 denoted by
continuous line shows a good agreement with the data. One
should note that space filling magnetic turbulence is recovered,
l1 + l2 = 1 (Burlaga et al., 1993).

As seen from Table 1 using our two-scale Cantor set model we
have obtained somewhat smaller value of the degree of multi-
fractality D for small scales as compared with those for the large
scales. In addition, on small scales this value is not very much
dependent on the solar cycle. However, the degree of multi-
fractality for large scales seems to be correlated with the phase of
the solar cycle, increasing with the intensity of the solar magnetic
field activity. We have already demonstrated that the multifractal
scaling is asymmetric for the energy transfer rate in the
turbulence cascade (Macek and Szczepaniak, 2008; Macek and
Wawrzaszek, 2009). Here for the magnetic field, the multifractal
spectrum is also asymmetric for small scales with the calculated
degree of asymmetry of A = 0.3–2.0.

The results for the generalized dimensions Dq and the multi-
fractal spectrum f ðaÞ for large scales obtained using the ACE data
of magnetic fields at 1 AU (diamonds), are presented in Figs. 3 and
4(b) or (d) during solar minimum or maximum, correspondingly.
Now the fits to the generalized two-scale model with pC0:33 or
0:48 and nearly equal scales, l1 = 0.42 and l2 = 0.58 or l1 = 0.61
and l2 = 0.39 are depicted by continuous lines. This means that for
large scales our model provides similar results as the one-scale p

model with p = 0.40 or p = 0.38 (dashed curve) confirming
magnetic field strengths observed by ACE at 1 AU (diamonds) for the small (a) and

001), correspondingly, together with fits using the usual one-scale (dashed lines)



Fig. 4. The corresponding singularity spectrum f ðaÞ as a function of a.

Table 1
Degree of multifractality D and asymmetry A for the magnetic field strengths

observed at 1 AU during solar minimum and maximum.

Small scales Large scales

D A D A

Minimum (2006) 0.3770.02 0.3270.02 0.5470.11 1.3570.55

Maximum (2001) 0.3070.03 2.0070.25 0.7570.21 0.8870.48
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approximately symmetric character of the multifractal singularity
spectrum (cf. Burlaga et al., 2006). We see that in contrast to the
asymmetric spectrum observed on small scales the spectrum
becomes symmetric on large scales at � 1 AU. Therefore the
obtained values of A¼ 1:3570:55 or 0:8870:48 are consistent
with unity, Table 1.

One sees from Table 1 that the degree of multifractality for
fluctuations of the interplanetary magnetic field strengths is
generally smaller than that for the energy transfer rate in the
turbulence cascade (cf. Burlaga, 1991; Macek and Szczepaniak,
2008; Macek and Wawrzaszek, 2009). However, it is worth noting
that the values obtained for large scales, D¼ 0:520:8, are
somewhat greater than that for small scales D� 0:3, contrary to
that for the energy transfer rates, where the degree of multi-
fractality rises with the decreasing scale (e.g., Marsch et al., 1996).
This means that the magnetic field behaviour on large scales, may
exhibit a significant multifractal scaling. On the other hand, for
smaller scales smaller values of D indicate possibility toward a
monofractal behaviour. This supports a recent suggestion that at
scales smaller than the proton gyroscale the magnetic field
fluctuations in quiet interplanetary solar wind turbulence are
monofractal (Kiyani et al., 2009).
5. Conclusions

We show that the degree of multifractality for magnetic field
fluctuations of the solar wind at � 1 AU for large scales from 2 to
16 days is greater than that for the small scales from 2 min to 18 h.
In particular, we have demonstrated that on small scales the
multifractal scaling is strongly asymmetric in contrast to a rather
symmetric spectrum on the large scales, where the evolution of
the multifractality with the solar cycle is also observed.

Our results provide some new evidence for multifractal structure
of the magnetic field strengths in the heliosphere, possibly also on
very small scales, where the degree of multifractality is rather small.
One can expect that the fluctuations of the magnetic field strength of
the solar wind should contain information about the dynamic
variations of the solar wind plasma at a broad range of scales from
minutes to days. In general, the proposed generalized two-scale
weighted Cantor set model should also be valid for magnetic field
turbulence. Therefore we propose this new turbulence model
describing intermittent fluctuations of plasma parameters for
analysis of turbulence in various environments.
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