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[1] The objective of this study is to investigate the nature of the magnetic field relaxation
process associated with tail current disruption on the basis of magnetic field measurements
collected in the near-Earth tail regions. In detail, using magnetic field data for three
current disruption (CD) events as observed by AMPTEE/CCE spacecraft, we investigate
the scaling features of the probability distribution functions (PDFs) of the magnetic
field fluctuations at different timescales t. The PDFs of magnetic field fluctuations in
non-MHD domain (i.e., below the proton gyroperiod) show non-Gaussian tails and the
probability of return Pt(0) scales in this domain as t�a with a > 1/2, which is compatible
with a Lévy statistics. Conversely, the scaling of the PDFs of the CD magnetic fluctuations
in the magnetohydrodynamic (MHD) regime is compatible with a classical Brownian
motion a � 1/2. These findings are discussed in terms of an anomalous diffusion process,
involving the magnetic field relaxation during CD. Furthermore, the relevance of these
results of a non-Gaussian statistics at the shorter timescales is discussed in connection
with the non-MHD nature of the CD phenomenon.

Citation: Consolini, G., M. Kretzschmar, A. T. Y. Lui, G. Zimbardo, and W. M. Macek (2005), On the magnetic field fluctuations

during magnetospheric tail current disruption: A statistical approach, J. Geophys. Res., 110, A07202, doi:10.1029/2004JA010947.

1. Introduction

[2] The Earth’s magnetosphere has been now recognized
to act as a dynamical nonlinear system, which shows a
complex behavior in response to the changes of the solar
wind conditions. One of the major displays of the magne-
tospheric dynamics is the magnetic substorm, a set of
phenomena involving a vast region of the near-Earth space
[Akasofu, 1968].
[3] Without any doubt, one of the most relevant

phenomena occurring at the substorm onset is the
development of a current wedge, which is responsible
for the magnetosphere-ionosphere coupling during
magnetic substorms. This current wedge is generally
associated with the diversion or disruption of the near
cross-tail current system, which is converted into a

system of field-aligned currents (FAC) [Akasofu, 1972;
McPherron et al., 1973; Baumjohann et al., 1981]. The
magnetospheric substorm onset is, indeed, associated
with a change of the tail magnetic configuration from
a stressed to a more dipolar shape involving the decrease
of the cross-tail current intensity [Atkinson, 1967;
Akasofu, 1972]. In more detail, during substorm expan-
sion phase the near-Earth magnetic field configuration
has been observed to dipolarize.
[4] In the last years this near-Earth dipolarization phe-

nomenon has been the subject of several observation as well
as simulation studies, which suggested a multiscale and a
non-MHD nature of the phenomenon [Lui et al., 1999;
Sitnov et al., 2000; Miura, 2000].
[5] As previously mentioned, in association with the

dipolarization at the substorm onset a phenomenon,
named current disruption (CD), is observed. In the past,
tail current disruption was widely investigated, especially
in connection to the onset location, the spatial extension,
and the magnetic field and particle flux variations [Lopez
and Lui, 1990; Ohtani et al., 1991, 1993]. During tail
current disruption, large-amplitude (DB/B > 1) and
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turbulent magnetic field fluctuations were observed in
the near-Earth magnetotail [Takahashi et al., 1987; Lui et
al., 1988]. The features of these large-amplitude mag-
netic field fluctuations were widely studied in the last
decade (see for a review Lui [2002]). These previous
studies pointed out the nonlinear nature of CD and
underlined that a broadband spectrum of fluctuations is
intermittently excited during CD, with timescales ranging
from below to above the ion (proton) cyclotron timescale
Tci = 1/fci [Lui and Najmi, 1997; Ohtani et al., 1995,
1998]. Moreover, it has been shown that in situ mag-
netic field fluctuations, associated with CD, are charac-
terized by intermittency at the smaller timescales and
nonlinear intermittent cross-coupling among fluctuations
at different timescales [Consolini and Lui, 2000]. All
these previous studies point to a non-MHD origin of the
observed CD magnetic field fluctuations, in which an
extremely relevant role is played by ions. Furthermore,
Ohtani et al. [1998] described the tail current disruption
in terms of ‘‘a system of chaotic filamentary electric
currents.’’
[6] In this work, we investigate the nature of the

magnetic field relaxation from a stressed configuration
toward a dipolar one during CDs by investigating the
statistical features of the magnetic field fluctuations. In
detail we present some results on the Wiener-Lévy-like
nature of the fluctuations of the magnetic field magni-
tude at different scales in the study of the distribution
function and the associated return probability Pt(0). The
statistical features of CD fluctuations are compared with
the concept of crossover of the scaling properties be-
tween non-MHD and MHD domain and are discussed in
connection with the suggested bimodal intermittent tur-
bulence scenario encompassing symmetry breaking phe-
nomenon and nonlinear crossover process between forced
and/or self-organized criticalities generated by MHD
(Alfvenic) and kinetic (whistler) coherent structures
[Chang, 1998a, 1999; Chang et al., 2004]. A leading
candidate for the observed fluctuations and the onset of

CD is suggested to be the kinetic current-driven insta-
bility above the ion gyrofrequency [Lui et al., 1991,
1999].

2. Lévy Distribution Function: A Brief Outlook

[7] A large class of dynamical processes in complex
systems may be described in term of strange kinetics
and anomalous diffusion [Bouchaud and Georges, 1990;
Shlesinger et al., 1993; Klafter et al., 1996; Sornette,
2000]. Under certain conditions the description of the
fluctuations of dynamical processes falls outside the
domain of the well-known gaussian and poissonian
statistics, showing distributions characterized by scale
invariance in the central part with power law tails. As
a matter of fact, a wide variety of stochastic phenomena
in physical systems is controlled by non-Gaussian dis-
tributions characterized by power law tails. A special
class of non-Gaussian distributions, which is quite ubiq-
uitous in nature, is the Lévy distribution. Lévy-like
distributions have been quite ubiquitously observed in
several dynamical processes, as anomalous diffusion
processes, chaotic transport in laminar fluid flows, par-
ticle diffusion in turbulent magnetic fields, gravitational
force resulting from randomly and homogeneously dis-
tributed point masses, etc.
[8] Stable Lévy distribution follows from the general-

ization of the Central Limit Theorem (CTL) for distribu-
tions characterized by an infinite second moment and may
be generally defined through its characteristic function
La(k, g):

ln La k; gð Þ ¼ �gjkja 1þ ibw a; kð Þð Þ; ð1Þ

where a 2 (0,2] is a characteristic index that controls the tail
shape, b 2 [�1, 1] determines the distribution symmetry
features, g > 0 is a scale factor, and

w a; kð Þ ¼
sgn kð Þ tan ap

2

� �
$ a 6¼ 1

2

p

� �
ln jkj $ a ¼ 1

8><
>: ð2Þ

[9] The probability distribution function (PDF) is
obtained by Fourier inverse transform of the characteristic
function La(k, g). Here, we will consider only the case of
symmetrical Lévy-stable distribution (b = 0)

La x;gð Þ ¼ 1

p

Z 1

0

exp �gkað Þ cos kxð Þdk: ð3Þ

[10] Closed analytical forms of symmetrical Lévy dis-
tribution may be recovered only in the case of a = 1, the
Cauchy distribution, and in the limit of a = 2, the
Gaussian distribution. Figure 1 shows the behavior of
the Lévy distribution with the same scaling factor g = 1
and for a set of different Lévy exponents a in the range
[1
2
, 3

2
].

[11] The class of Lévy distributions represents a special
class of stable distributions, which has also nontrivial

Figure 1. Behavior of the Lévy distribution La(x, g) with
g = 1 and 1

2
� a � 3

2
.
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scaling features. As a matter of fact, if we consider the
following scale transformation:

x ! lax

g ! lbg



; ð4Þ

where a and b are real numbers (generally named scaling
powers) and l is a positive parameter, then it is possible to
show that symmetrical stable Lévy distributions satisfy the
following functional equation:

La lax;lbg
� �

¼ lLa x;gð Þ ð5Þ

with a = �1 and b = �a 8l 2 R+, i.e., Lévy distribution
has the property of a generalized homogeneous function
(see equation (5)). Thus it is possible by choosing l = g

1
a

to define a scaling function F(~x),

La x;gð Þ
g�

1
a

¼ La
x

g
1
a
; 1

� �
¼ F ~xð Þ; ð6Þ

where ~x = x/g
1
a. In other words, if we plot (La(x; g)/g

�1
a)

versus (x/g
1
a), we observe data collapsing of different PDFs

characterized by the same Lévy exponent a. To illustrate
this property, let us consider the following stochastic
process:

x iþ 1ð Þ ¼ x ið Þ þ h ið Þ; ð7Þ

where x(0) = 0 and h(i) is a d-correlated noise distributed
according to a symmetric Lévy distribution La(x; g) (b = 0).
This process is equivalent to a discrete-time random
walk (i.e., a diffusion process) of a particle under the
influence of stochastic pulses and is generally named
Lévy flight.
[12] Figure 2 shows a comparison between a standard

Brownian two-dimensional (2-D) random walk and a 2-D
Lévy flight, where the jumps are distributed according to a
Gaussian distribution and to a Cauchy distribution (Lévy
index a = 1), respectively.
[13] Furthermore, the process described by equation (7) is

equivalent to a sum of N independent identically distributed
stochastic variables, i.e.,

x Nð Þ ¼
XN�1

i¼0

hi: ð8Þ

Thus the probability distribution function PN(x; g) of the
stochastic variable x after N steps, written in terms of the
characteristic function as

PN k; gð Þ ¼
Y
i

La k;gð Þ ¼ exp �Ngjkjað Þ ð9Þ

reads

PN x;gð Þ ¼ 1

N
1
a
La

x

N
1
a
;g

� �
: ð10Þ

In passing we note how equation (10) is equivalent to
equation (6).
[14] In Figure 3 we show the evolution of the PDF with

increasing N, as evaluated using expression (9). Further-
more, by means of equation (10), we may collapse data
reported in Figure 3 in a single master curve. This is exactly
what is shown in Figure 4. As a consequence of equation
(10), we can write a scaling relationship for the probability
of return PN(0; g),

PN 0; gð Þ � N�1
a: ð11Þ

The equation (11) has a straightforward consequence: if we
read the stochastic process described by equation (7) as a
diffusion process, then, being 0 < a � 2 (or 1

2
� 1

a < 1), we

Figure 2. A sample (a) of Brownian two-dimensional
(2-D) random walk and (b) of a 2-D Lévy flight
simulated using a 2-D version of equation (7). Dashed
circles have a radius r = 10 and 20, and r = 20, 40, and
60 in Figures 2a and 2b, respectively.
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are dealing with an anomalous superdiffusive process
[Bouchaud and Georges, 1990]. Anomalous transport
processes can be described as Lévy random walks in terms
of integral equations and fractal dynamics [Klafter et al.,
1987; Metzler and Klafter, 2000]. Also, approaches
involving fractional derivatives were developed [Zaslavsky,
1994; Metzler and Klafter, 2000; Sokolov and Metzler,
2003]. Yanovsky et al. [2000] have recently shown that in
the case of Lévy distributed pulses an anomalous diffusion
process can be associated with a fractional Fokker-Planck
equation (FFPE) of the form:

@p x; tð Þ
@t

¼ �g �Dð Þ
a
2p x; tð Þ

h i
; ð12Þ

where (�D)
a
2 is the Riesz’s fractional differential operator,

defined as

�Dð Þ
a
2 f xð Þ ¼ F�1 jkja f̂ kð Þ

� �
; ð13Þ

where F�1 denotes the inverse Fourier transform and f̂ (k)
the Fourier transform of the function f(x). From equation
(12) we may note that the scale factor g of the Lévy
distribution related with the stochastic noise in the equation
(7) plays the role of a diffusion coefficient in the FFPE.
[15] Although in recent years the Lévy distributions and

the corresponding Lévy processes have encountered a good
success in the description of the statistical features of a wide
variety of observed complex phenomena, the application of
Lévy distributions to real data is limited by the divergence
of the second and higher moments, which is in contrast with
the finite moments of real empirical data. As a matter of
fact, in many cases the Lévy shape is limited to small and
intermediate values of the variables, while at very large
values some cutoff is present so that the moments are not

divergent. To overcome such a problem associated with
stable Lévy distribution, a different class of distributions,
known as truncated Lévy distributions (TLD), was intro-
duced [Mantegna and Stanley, 1994; Koponen, 1995;
Sornette, 2000]. TLDs are Lévy-like in the central regime
and truncated in the far tail by a function decaying faster
than the Lévy distribution. Thus the TLD has finite vari-
ance, and as a consequence of the the Central Limit
Theorem (CLT), the distribution of the sums of independent
variable distributed according to the TLD approaches a
Gaussian distribution. Thus it should exist a characteristic
scale separating Lévy and Gaussian regimes. As a conse-
quence of its definition, TLD is no longer stable to
convolution, and therefore the convolutions of TLDs cannot
be collapsed using a simple expression as equation (6) and/
or equation (10). In such a case, TLDs will involve multi-
scaling properties. As an example of a TLD, we will
consider a Lévy distribution with an exponential cutoff
[Koponen, 1995]:

pTa xð Þ �
C exp � jxj

d

� �
xaþ1

; ð14Þ

where the expression is valid in the limit x ! ±1, C is a
coefficient, and d is the exponential cutoff scale. The
corresponding characteristic function is

ln P̂ kð Þ ¼ �g
k2 þ d�2
� �a

2 cos a arctan djkjð Þ½ � � d�a

cos
pa
2

� � : ð15Þ

[16] Figure 5 shows a comparison between a Lévy
distribution and a truncated Lévy distribution characterized
by the same characteristic index a = 1.2 and the same
scaling factor g = 0.1. The TLD has a exponential cutoff
d = 3. To show the convergence of a TL process to a

Figure 3. Evolution of the probability distribution func-
tions (PDF) P(xi) relative to the stochastic process described
by equation (7) at different time steps. The arrow indicates
increasing time steps (i = 1, 2, 4, 10, and 20). Here, the
Lévy exponent is a = 1.

Figure 4. The data collapsing of the PDFs showed in
Figure 3 according to equation (6). Here, a = 1 - Cauchy or
Lorentz distribution.
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Gaussian process, we have investigated the evolution of
the probability of return PN(0) in the case of a process
analogous to the one described by equation (7) or (8).
Figure 6 shows the evolution of PN(0) as a function of N
for a simple Lévy flight and a TL process. While for a
simple Lévy flight PN(0) scales according to equation (11)
(PN(0) � N�s with s = 1/a), for the TL process two
asymptotic regimes are found:

PN 0ð Þ � N�s ! N � Nc

N�1
2 ! N � Nc

;



ð16Þ

where s = 1/a and the crossover scale Nc � da. The absence
of a single scaling regime implies that in such a case it
is not possible to get a single parameter data collapsing
as described for the Lévy distribution. Data collapsing
is possible only in the asymptotic limit (i.e., N � Nc

or N � Nc). This is the evidence of multiscaling
features [Nakao, 2000].

3. Data Description and Analysis

[17] To investigate the dynamics of magnetic field
reconfiguration during magnetotail current disruption, we
have considered the best three events of current disruption,
as observed by the AMPTE/CCE spacecraft on 13 May
1985 (85/133) at �2111 UT, on 1 June 1985 (85/152)
at �2314 UT, and on 28 August 1986 (86/240) at
�1152 UT. These CD events have been previously widely
studied [Ohtani et al., 1995; Lui and Najmi, 1997;
Consolini and Lui, 1999, 2000].
[18] Data time resolution is Dt ’ 0.125 s (see Potemra et

al. [1985] for details of the instrument). In all the analyzed
events the magnetic field latitude angle remains very high
during all the period under investigation, indicating that
AMPTE/CCE spacecraft was in the current sheet. Thus we

will assume that the observed fluctuations are mainly
temporal and not spatial. Furthermore, to investigate the
dynamics of magnetic field during the CD, we will restrict
our study only to the time intervals during which the events
take place, and we will concentrate our attention to the
evolution of the magnetic field magnitude B =

ffiffiffiffiffiffiffiffiffiffiffiffiP
i B

2
i

p
.

[19] In Table 1 we report the selected time intervals for
the three CD events along with some relevant features of the
CD locations (distance from the Earth R, the magnetic local
time MLT, and the distance from the neutral sheet dZ) and
the corresponding average proton cyclotron frequency h fcii,
evaluated using the average magnetic field intensity hBi on
the selected time intervals.
[20] Figure 7 shows the actual magnetic field magnitude,

observed during the 85/152 CD event. As clearly shown by
this figure, during CD the magnetic field relaxes from one
configuration (stretched), characterized by an average field
of �8 � 9 nT, to a different one (dipolar), with an average
field of �30 nT. Furthermore, if we look at the short
timescale dynamics, we may notice the occurrence of
intermittent variations of the magnetic field magnitude,
i.e., the occurrence of periods of relative stasis punctuated
by activity bursts. To underline this point, we have studied
intermittency during CD using the Extended Self-Similarity
(ESS) analysis [Benzi et al., 1993], which is based on the
investigation of the relative scaling of the qth-order gener-
alized structure functions Sq(t), defined as follows:

Sq tð Þ ¼ hjB t þ tð Þ � B tð Þjqi; ð17Þ

where h i denotes time average. In detail, ESS consists
of determining the relative scaling exponents hp(q) of the
qth-order generalized structure functions in respect of the
pth-order generalized structure function, i.e.,

Sq tð Þ � Sp tð Þ
� �hp qð Þ

: ð18Þ

Figure 5. A comparison between a Lévy distribution
(dashed line) and a truncated Lévy distribution (solid line)
characterized by the same characteristic index a. The used
parameters are a = 1.2, g = 0.1, and d = 3.

Figure 6. The behavior of the probability of return PN(0)
for a Lévy and a truncated Lévy process as the one
described by equation (7). Here, a = 1.2, g = 0.1, and d = 3.
Solid and dotted lines are power law best fit with scaling
exponents s � 0.833 and s � 0.500, respectively. Nc

indicates the location of the crossover scale.
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[21] In Figure 8 we report the result of the ESS analysis in
the case of the CD event 85/133. Figure 8a shows the
relative scaling of the qth-order structure functions versus
the second-order structure function during CD. This choice
may be justified by the fact that for a standard brownian
motion the second-order structure function scales linearly
with time. A generalized scale invariance in the structure
functions is observed. Figures 8b and 8c show the relative
scaling exponents h2(q) for a period before and during CD.
While before CD h2(q) depends linearly on q, during CD an
anomalous scaling (convex dependence on q) is found. This
anomalous scaling is the signature of intermittency during
CD [Benzi et al., 1993], and the comparison with the linear
trend of h2(q) before CD suggests that time intermittency is
a peculiar feature of CD. Furthermore, time intermittency is
a general behavior of CD as clearly shown in Figure 9,
where the dependence of h2(q) on q is shown for the three
events here investigated. Thus the magnetic field relaxation
toward a dipolar configuration is sustained by fast, intermit-
tent, and stochastic events and may be viewed in terms of a
transient motion from one configuration toward another.
[22] This point suggests that we can approach CD by

investigating the statistical features of fluctuations of the
magnetic field intensity B at different timescales or equiv-
alently the scaling properties of the PDFs of the magnetic
field fluctuations P(dB, t) at different timescales t. Here,
intensity fluctuations are defined as follows:

dB tð Þ ¼ B t þ tð Þ � B tð Þ: ð19Þ

[23] In Figure 10 we show the PDFs Pt(dB) of the
magnetic fluctuations dB(t), evaluated at the shortest avail-
able timescale t = 0.125 s for the three events here

considered. The PDFs are almost symmetrical and lepto-
kurtic, i.e., characterized by a non-Gaussian shape with
enhanced wings. This result again supports the occurrence
of intermittent fast processes during CD. For comparison,
we show in Figure 11 the PDFs of the magnetic field
fluctuations at the same timescale for a selected interval
before CD. In contrast to the PDFs during CD, the PDFs
before CD are almost Gaussian, thus confirming that the
occurrence of large intermittent small-scale fluctuations is a

Table 1. Selected Current Disruption (CD) Eventsa

Event Time Interval, UT R, RE MLT, hour dZ, RE h fcii, Hz
85/133 2111:40–2119:20 7.5 23.9 �0.62 �0.77
85/152 2313:45–2320:15 8.8 0.3 0.22 �0.40
86/240 1152:30–1157:30 8.1 23.4 0.03 �0.40

aHere h fcii is the average proton-cyclotron frequency during CD. (Some
information is extracted from Ohtani et al. [1995].)

Figure 7. The actual magnetic field magnitude as
observed during the current disruption (CD) event (85/152).

Figure 8. Extended Self-Similarity (ESS) analysis for the
85/133 CD event. (a) The relative scaling of the qth-order
structure function Sq(t) as a function of the second-order
structure function S2(t), for q = 0.5, 1.0, 1.5, 2.0, 2.5, and
3.0, during the CD event. (b) The relative scaling exponents
h2(q) versus the moment order q for a period just before CD.
Solid line is a linear best fit. (c) The relative scaling
exponents h2(q) versus the moment order q during CD.
Solid line refers to the linear best fit of Figure 8b.

Figure 9. The relative scaling exponents h2(q) versus the
moment order q for the three CD events here investigated.
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peculiar feature of the CD dynamics. Another relevant
aspect of these non-Gaussian fluctuations is that they occur
on timescales which are below the characteristic proton
gyroperiod, thus involving processes in the non-MHD
domain.
[24] Figure 12 shows the evolution of the PDF of the

magnetic field fluctuations with the scale t in the case of
the event 85/152. PDFs evolve with the timescale t from a
non-Gaussian leptokurtic shape at the smaller non-MHD
scales toward a more Gaussian shape at the MHD scales.
This behavior resembles that of a TL process, as described
in section 2. To characterize the evolution of the PDFs on

different timescales, we have studied the scaling features
of the so-called probability of return Pt(0) with t.
[25] Figure 13 shows the scaling features of the proba-

bility of return Pt (0) with t in the case of the 85/152 CD
event. Two different asymptotic regimes characterized by
different power laws (i.e., Pt (0) � t�s) are found in the
limit of small and large timescales, respectively. In partic-
ular, while the large timescale scaling is quite well in
agreement with the typical scaling features of Pt (0) for a
normal Gaussian (Brownian) process (here s � 0.5), in the
limit of small timescale the observed scaling resembles the
behavior of a Lévy process with a � 1.1 (s = 1

a � 0.89).

Figure 10. The normalized PDF of the magnetic field
fluctuations at the timescale t = 0.125 s during the CD for
the events here considered.

Figure 11. The normalized PDF of the magnetic field
fluctuations at the timescale t = 0.125 s before CD for the
events here considered.

Figure 12. Evolution of the PDF of the magnetic field
fluctuations at different timescales t in the case of the CD
event 85/152. t is in units of data time resolution Dt ’
0.125 s.

Figure 13. Scaling of the probability of return Pt(0) with
the time delay t in the case of 85/152 CD event. Solid and
dashed line are power law best fits, Pt(0) � t�s, with
scaling exponents s = [0.89 ± 0.04] and s = [0.54 ± 0.03],
respectively. tc � 3.1 s indicates a crossover time among
the two asymptotic regimes.
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Furthermore, we can identify a crossover characteristic
timescale tc � 3 s. This crossover is quite well in agreement
with the average ion gyrofrequency, as evaluated using the
average magnetic field during CD and reported in Table 1.
In other words the ion gyrofrequency sets a crossover
timescale among two different asymptotic regimes: the
former related with Lévy statistics of the fluctuations and
the latter with Gaussian statistics.
[26] The observed behavior is not peculiar just for the

case of the 85/152 CD event but is a general behavior of
all the three events here investigated. In Table 2 we report
the scaling exponents s1 and s2 in the two asymptotic
regimes (small and large timescales, respectively) and the
corresponding crossover timescale tc. This table suggests
the existence of a universal behavior in the way how the
magnetic field relaxes toward the dipolar configuration
during CD. In particular we may observe how at non-
MHD scale (i.e., above the ion gyrofrequency) the asymp-
totic regime is that of Lévy, thus involving an anomalous
diffusion process, while at the MHD scales (i.e., below the
ion gyrofrequency) a standard diffusion regime is recov-
ered. We are thus observing a gradual change of the
diffusion regime as it occurs for the case of a TL process.
To stress this point, in Figure 14 we have plotted the trend
of the probability of return Pt(0) with t, rescaled as
follows:

t ! t0 ¼ t=tc
Pt 0ð Þ ! Pt 0ð Þ=Ptc 0ð Þ ; ð20Þ

where tc � 1/hfcii, for the three CD events. The collapse of
the scaled probability of return onto one single curve is
the signature of a general and universal behavior of the
dynamical features of the processes responsible for the

Earth’s dipolarization phenomenon occurring at the onset
of the geomagnetic substorms. The average scaling
exponents are s = [0.95 ± 0.05] and s = [0.52 ± 0.02]
in the non-MHD and in the MHD domain, respectively. In
passing let us underline how this universal behavior of the
probability of return could suggest the occurrence of a
symmetry breaking. We will return to this point in the
next section.
[27] The evidence of a symmetry breaking and of two

different scaling regimes separated by a crossover region is
also shown by the difficulty to get a global data collapsing,
as clearly shown in Figure 15. As a matter of fact, data
collapsing should be possible only in the asymptotic limits
for t � tc or t � tc. The consequences of this point will
be discussed later in the next section.
[28] In Figure 16 we show a comparison among the PDFs

of the smallest timescale fluctuations, Lévy and truncated
Lévy (TL) distribution. The good agreement with the TL
distribution confirms the previous hypothesis that magnetic
field relaxation during CD take the form of a TL process.

4. Discussion

[29] Let us start with a brief resume of the results of the
previous section. The study of the relaxation process ob-
served during CD evidenced the existence of two different
asymptotic regimes for the probability of return Pt(0),
characterized by Lévy and Gaussian scaling features,
respectively. In detail, this process resembles the behavior
of a stochastic truncated Lévy diffusion process involving
anomalous diffusion at the smaller timescales (non-MHD
domain), a continuous symmetry breaking, and standard
diffusion at the longer timescales (MHD domain). Further-
more, because fluctuations at the shorter timescale (i.e.,
below the crossover timescale tc) are intermittent and the

Table 2. Characteristic Parameters of the Scaling Features of the

Probability of Return Pt(0) With t for the Three CD Events

Event s1 s2 tc, s

85/133 0.97 ± 0.06 0.51 ± 0.04 1.5 ± 0.7
85/152 0.89 ± 0.06 0.54 ± 0.03 3.0 ± 1.0
86/240 0.99 ± 0.04 0.50 ± 0.04 1.9 ± 0.6

Figure 14. Universal trend of the scaled probability of
return (see equation (20)). Dashed lines are power law with
scaling exponents s = 0.95 and s = 0.50, respectively.

Figure 15. Collapsing of PDFs of magnetic fluctuations at
different timescales for the 85/152 CD event. The legend
numbers (#) refer to the scale according to the following
relationship: t = #Dt.
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magnetic field relaxation toward a dipolar configuration is
analogous to an anomalous superdiffusive process, CD
seems to be mediated by a sequence of spotty, fast, and
intermittent fluctuations occurring in the non-MHD domain.
Let us now discuss the physical implication of our results.
[30] First of all, we can comment that the change of the

statistics from Gaussian to Lévy (obtained when going from
the MHD domain to the non-MHD domain) could be an
evidence of the fact that the underlying relaxation process is
changing from Markovian (simple) to non-Markovian (com-
plex), involving an increase of the range of interaction and
correlation that manifests as fast processes. We underline
that the occurrence of fast relaxation process at frequencies
above the characteristic ion cyclotron frequency (i.e., in the
non-MHD domain where the plasma dynamics is governed
by electron motions) again points toward a non-MHD nature
of the CD phenomenon [Lui et al., 1999] involving fast
processes in high-b noncollisional plasmas.
[31] A candidate mechanism for the CD is the current-

driven kinetic instability known as the cross-field current
instability, which excites oblique whistler waves [Lui et al.,
1991]. Several observational features are consistent with
this theory, such as the observed wave frequencies and the
timescale for the onset of CD. Quasi-linear calculations of
the instability show the resultant anomalous resistivity and
current reduction to be consistent with those inferred from
observation as well [Lui et al., 1993; Yoon and Lui, 1993].
Since the excited waves are oblique whistlers, magnetic
reconnection arising from the generated anomalous resis-
tivity is expected to be mediated by whistler waves, a
feature which is also consistent with recent findings
[Deng and Matsumoto, 2001]. These instability analyses
were based on the notion that just prior to CD onset the
plasma environment renders the ions unmagnetized while
electrons remain magnetized.

[32] The above approach is quite compatible with
another approach [Kingsep et al., 1990; Fruchtman and
Gomberoff, 1993] to treat plasma phenomena occurring
on timescales fast in comparison to the ‘‘ideal’’ MHD
timescales. This new plasma description, named electron-
magnetohydrodynamics (EMHD), is a fluid theory describ-
ing the behavior of high-b plasmas at timescales shorter
than the ion cyclotron period and spatial scales smaller
than the ion inertial length di, where most of the dynamics
of the plasma is governed by electrons. Such a theory is of
special interest to model the collisionless reconnection
events [Bulanov et al., 1992; Avinash et al., 1998; Attico
et al., 2000], which seem to be responsible for the activity
observed both in the solar corona and in the Earth’s
magnetosphere. In this framework, Biskamp et al. [1996]
introduced a novel type of turbulence in dissipationless
plasmas, arising from electron-magnetohydrodynamics.
Such a novel EMHD turbulence exhibits some interesting
features when it is compared with standard MHD-
turbulence. For example, in contrast to the Alfvén effect
in MHD turbulence [Kraichnan, 1965], the whistler effect
is not relevant to the spectral energy transfer. Moreover,
two relevant spectral regimes are expected in the limit of
long and short wavelength. In detail, in the limit of kde < 1
(here de is the electron inertial length), neglecting the
whistler effect, a steeper energy spectrum is recovered,
Ek � k�7/3 [Biskamp et al., 1996]. However, we remark
that EMHD is still a fluid theory that cannot address
kinetic effects, e.g., Landau damping, finite Larmor radius
effect, etc.
[33] In Figure 17 we show the average energy spectrum

E( f ) in the case of the three CD events here analyzed. A
f �7/3 region is found below the ion cyclotron frequency.
Neglecting the whistler effect and assuming that it could
be possible to invoke Taylor’s hypothesis (i.e., a linear

Figure 16. Comparison among shortest timescale PDFs,
Lévy distribution with a = 1.05, and a truncated Lévy
distribution (TL) with a = 1.05. Solid and dashed lines are
nonlinear best fit using expressions (3) and (15), respectively.
Fitting parameters are g = [0.29 ± 0.01], and g = [0.35 ± 0.01]
d = [5.5 ± 0.3] for Lévy and TL PDF, respectively.

Figure 17. The average energy spectrum scaled to the
ion-cyclotron frequency. The dashed line refers to the
expected behavior for electron-magnetohydrodynamics
(EMHD) turbulence.
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relationship between k and f ), this result suggests that the
turbulent and intermittent magnetic field fluctuations
observed during CD might be compatible with the occur-
rence of EMHD turbulence. Thus the anomalous scaling
of the return probability, observed by analyzing the
statistical features of the magnetic field fluctuations at
the smaller timescales, could be the consequence of fast
relaxation events in a turbulent medium governed by
electron dynamics.
[34] A slightly different framework for interpreting the

results of section 3 could be the stochastic intermittent
turbulent scenario proposed by Chang [1998a, 1998b,
1998c, 1999, 2001] and his coauthors [Consolini and
Chang, 2001; Chang et al., 2003, 2004]. Such a scenario
approaches the localized and intermittent processes and the
anomalous global transport phenomena observed in the
magnetotail plasma environment in terms of the develop-
ment, interaction merging, and evolution of coherent mag-
netic and plasma structures. These structures, which are
bundles of nonpropagating multiscale (i.e., covering a very
wide range of frequencies from non-MHD to MHD
regimes) fluctuations localized at plasma resonance sites,
take the form of cross-tail current filaments in the neutral
sheet region. In such a scenario, the stochastic evolution and
interaction of these coherent structures would characterize
the turbulent dynamics of the tail regions.
[35] As shown by the results of our analysis, the relaxa-

tion of the tail magnetic field from a stressed configuration
toward a dipolar one is strongly mediated by fast and
intermittent processes below the ion gyroperiod which
appear in an anomalous scaling of the return probability
Pt(0) at the corresponding scales. Thus we could conjecture
that observed intermittent fluctuations result from the inter-
mixing and interactions of coherent whistler structures,
whose coelescence could be responsible for the reconfigu-
ration of the filamentary current structures. In other words,
the observed relaxation of the tail magnetic field toward a
dipolar one may be viewed in terms of a stochastic coarse-
grained dissipation associated with the interaction of these
coherent whistler structures. In this picture, the coarse-

grained dissipation associated with the spotty fluctuations
would involve a strong cross-coupling among fluctuations
at different timescales, without involving local k – w space
interactions as generally suggested in the view of turbulent
cascading processes, as well as a sort of inverse cascading
process. This point is supported by previous findings
[Consolini and Lui, 2000] on the occurrence of strong
short-lived phase coupling among different high-frequency
fluctuations. Furthermore, if we assume that the general
dynamical state of the plasma and current sheet is that of a
forced and/or self-organized criticality (FSOC) [Chang,
1999], the scaling features, observed in the structure func-
tions Sq(t) and in the probability of return Pt(0), would be a
consequence of the self-similar and hierarchical topology of
the coherent structures [Milovanov et al., 2001].
[36] Let us now discuss the meaning of the TL distribu-

tion of the fluctuations and its connection with the occur-
rence of a sort of continuous symmetry-breaking as
evidenced by the scaling features of the probability of
return Pt(0). As clearly stated in section 2, for a Lévy
distribution with characteristic scaling index a, moments
higher than a diverge. In detail, we cannot define the
second moment, which means that fluctuations involving
infinite energy could be possible. This is clearly nonsense
when we refer to any physical system in which simple
consideration on the finiteness of these systems corre-
sponds to a finiteness of the fluctuations. In other words,
we should observe a cutoff in the power law tails of the
Lévy distribution. The existence of a crossover or a
rollover to a second branch of the distribution, involving
the finiteness of the second moment, will lead to a not
stable distribution for the fluctuations that flows from an
ideal Lévy distribution below a certain crossover scale to a
Gaussian distribution at scales much larger than the
crossover.
[37] To clarify the aforementioned points on a possible

link of a hierarchy of self-similar structures and the sto-
chastic nature of the observed diffusion process, we have
simulated a stochastic process according to the following
linear stochastic Langevin equation:

dx tð Þ
dt

¼ �gx tð Þ þ sh tð Þ; ð21Þ

where g and s are parameters related with the decorrelation
time (g = 1/tc) and the amplitude of the noise, respectively,
and h(t) is a d-correlated noise with zero mean value and
distributed according to a power-law distribution p(h)
defined as follows:

P hð Þ �

0 ! h � �b

jhj�m ! h ¼ �b;�að Þ
h�m ! h ¼ a; bð Þ
0 ! h � b

8>><
>>:

; ð22Þ

where a = 0.01, b = 10, and m = 2.2. This choice for P(h)
of small-scale fluctuations distributed according to a power
law can be understood in terms of scale-free self-similar
hierarchy of whistler coherent structures. In other words,
we are assuming that the merging of scale-free self-similar
coherent structures in the non-MHD regime will reflect in
a scale-free distribution function of the fluctuations at the

Figure 18. The behavior of the probability of return Pt(0)
for the PDFs of the fluctuations of the process described by
equation (21). Solid and dashed line refer to power laws
with scaling exponents s = �0.83 and s = 0.5, respectively.
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shorter timescales. Figure 18 shows the behavior of the
probability of return Pt(0) of the distribution function of
fluctuations at different timescales t. As expected on the
basis of what already mentioned, the Pt(0) will flow from
an anomalous scaling Pt(0) � t�s with s = 1/(m � 1)
toward the standard scaling of Brownian process Pt(0) �
t�1/2. Thus the PDF of the fluctuations converges to a
Lévy fixed point and successively to a Gaussian stable law
(see Figure 19).
[38] The aforementioned simulation clearly shows the

relationship between the stochastic coarse-grained dissipa-
tion, which follows the coalescence of multiscale coherent
structures in a general topological phase transition
[Consolini and Lui, 1999; Chang, 1999, 2001], and the

observed symmetry-breaking in the relaxation of the mag-
netic field toward a dipolar configuration.

5. Summary

[39] In this study we have examined the statistical fea-
tures of the magnetic field fluctuations and the relaxation of
the magnetic field towards a dipolar configuration, as
observed by AMPTE/CCE in the near-Earth tail during
CD. We applied a rather novel approach based on the
analysis of the scaling properties of the probability of return
Pt(0) at different timescales t to three events widely studied
in the past, with a particular emphasis on the 85/152 event.
We found that the scaling of the probability of return Pt(0)
changes from a nearly Lévy regime to a Gaussian regime
from the non-MHD to the MHD domain. This fact indicates
that CD is strongly mediated by fast and intermittent
relaxation processes occurring in the non-MHD domain,
where the nature of the fluctuations and of the relaxation of
the tail magnetic field from a stressed configuration toward
a dipolar one appears to be a complex phenomenon.
Furthermore, the PDFs of the magnetic field fluctuations
are very well in agreement with Lévy distribution at the
smaller timescales converging to a Gaussian distribution at
the larger timescales. This has been interpreted as the
occurrence of a dynamical symmetry-breaking related with
a truncated Lévy (TL) process.
[40] Our results point toward the non-MHD nature of CD

phenomenon, which involves whistler turbulence. Two
slightly different physical scenarios have been discussed.
One involves the development of EMHD turbulence by a
kinetic current-driven instability in generating fluctuations
above the ion gyrofrequency. The other invokes stochastic
merging of whistler coherent structures. These two scenar-
ios can be considered complementary to each other. The
first scenario describes the specific physical process in the
EMHD regime responsible for the creation of large mag-
netic fluctuations at high frequencies. Since multiscale
coupling is expected in the CD phenomenon, the simple
approach of following the instability growth to its saturation
may not provide a precise description of the nonlinear
physics at the end of CD, especially in terms of its scaling
properties and complexity characteristics. Therefore this
first scenario does not preclude that the nonlinear stage of
CD could be better described by the FSOC scenario than by
the traditional turbulence theory. The FSOC scenario
describes well the scaling properties, symmetry breaking,
and intermittent relaxation at the nonlinear stage of the
observed turbulence. However, it lacks the specification of
the physical mechanism for the creation of the coherent
whistler structures, which are fundamental entities of the
FSOC scenario but that are only present at substorm times.
[41] In closing, although our study does not allow us to

identify the trigger mechanism of CD, we believe that our
results on the statistical features of the CD fluctuations open
a new perspective on the modelling of magnetic substorm
initiation based on the relevance of stochasticity in the
evolution of such a dynamical process.

[42] Acknowledgments. The authors gratefully acknowledge
T. Chang for useful discussions. The work at IFSI-Rome and SRC-Warsaw
was supported by the European Community’s Human Potential Programme
under contract HPRN-CT-2001-00314, ‘‘Turbulent Boundary Layers in
Geospace Plasmas.’’ W. T. Macek was also supported by the Polish

Figure 19. The PDFs of the fluctuations of the process
described by equation (21) at two different scales, (a) t = 16
and (b) t = 1024. Solid lines refer to nonlinear best fits
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