
The multifractal spectrum for the solar wind flow

Wiesław M. Macek

Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University in Warsaw,
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Abstract. We analyze time series of velocities of the low-speed stream of the solar wind plasma including Alfvénic
fluctuations measured in situ by the Helios spacecraft in the inner heliosphere. We demonstrate that the influence of noise
in the data can be efficiently reduced by a moving average filter. We calculate the multifractal spectrum for the solar
wind flow directly from the cleaned experimental signal. We also show that due to nonlinear noise reduction we get with
much reliability estimates of the Kolmogorov entropy and the largest Lyapunov exponent. For intermediate length scales the
Lyapunov exponent and the entropy are plausibly positive locally, which exhibits sensitivity to initial conditions. This shows
that the slow solar wind in the inner heliosphere is most likely a deterministic chaotic system, where noise is not dominant.

The generalized dimensions of attractors are important
characteristics ofcomplex dynamical systems [1]. Since
these dimensions are related to frequencies with which
typical orbits in phase space visit different regions of
the attractors, they provide information about dynamics
of the systems [2]. If the measure has different fractal
dimensions on different parts of the support, the measure
is multifractal [3].

Following space physics applications, e.g., [4, 5], we
consider the inner heliosphere. The solar wind plasma
flowing supersonically outward from the Sun is quite
well modeled within the framework of the hydromag-
netic theory. This continuous flow has two forms: slow
(� 300 km s�1) and fast (� 900 km s�1) [6]. The fast
wind is associated with coronal holes and is relatively
uniform and stable, while the slow wind is quite variable
in terms of velocities. We limit our study to the low-speed
stream. Indication for a chaotic attractor in the slow solar
wind has been given in [7, 8, 9, 10]. In particular, Macek
[7] has calculated the correlation dimension of the recon-
structed attractor and has provided tests fornonlinearity
in the solar wind data, including a powerful method of
statistical surrogate data tests [11]. Further, Macek and
Redaelli [9] have shown that the Kolmogorov entropy of
the attractor ispositive and finite, as it holds for achaotic
system. The entropy is plausibly constrained by aposi-
tive local Lyapunov exponent that would exhibit sensitive
dependence on initial conditions of the system.

Recently, we have extended our previous results on the
dimensional time series analysis [7]. Namely, we have
applied the technique that allows a realistic calculation
of the generalized dimensions of the solar wind flow, di-
rectly from the cleaned experimental signal by using the

Grassberger and Procaccia method [12]. The resulting
spectrum of dimensions shows multifractal structure of
the solar wind in the inner heliosphere [10]. The obtained
multifractal spectrum is consistent with that for the mul-
tifractal measure on the self-similar weighted Cantor set.
In this paper we demonstrate the influence of noise on
these results and show that noise can efficiently be re-
duced by a simple moving average filter.

We analyze the Helios data using plasma parameters
measuredin situ in the heliosphere near the Sun, at
0.3 AU, Ref. [6]. The radial velocity component of the
plasma flow,v, has been investigated in [7, 9]. In this
paper we also analyze one of the so-called Elssäser vari-
ablesx � v�vA, wherevA � B��µoρ�1�2 is the Alfvénic
velocity calculated from the experimental data: the radial
component of the magnetic field of the plasmaB and the
mass densityρ (µo is the permeability of free space).
These raw data ofN � 4�513 points, with sampling time
of ∆t � 40�5 s, are shown in Figure 1 (a).

As in [10], slow trends (420�06� 15�4 t � 82�31 t 2,
with t being a fraction of total sample) were subtracted
from the original dataxi � v�ti� � vA�ti�, in km s�1,
i � 1� � � � �N and the data with the initial several percent
noise level, were (8-fold) smoothed (replacing each data
point with the average of itself and its two nearest neigh-
bors). The detrended and smoothed data are shown in
Figure 1 (b) of Ref. [10]. Certainly, this moving aver-
age filter removes considerable amount of noise, leav-
ing only about 1%. The nonlinear filtering, which allows
calculation of the entropy, has been discussed in [9]. It
has been shown that after the nonlinear Schreiber filter
the calculated dimension has been somewhat reduced. In
this paper, we focus on the calculations of dimensions.
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FIGURE 1. (a) The flow velocity with included Alfvénic velocity,v� vA (Elssäser variable) observed by the Helios 1 spacecraft
in 1975 from 67:08:20.5 to 69:11:07 (day:h:min) at distances 0.32 AU from the Sun, for the raw data, (b) the normalized
autocorrelation function as a function of the time lag for the detrended and smoothed data.

Therefore, we use moving average filtering, cf. [7].
Table 1, taken from Ref. [10], summarizes selected

calculated characteristics of the detrended data cleaned
by using the moving average filter. The probability distri-
butions are clearly non-Gaussian. We have a large skew-
ness of� 0�26 (as compared with its normal standard
deviation 0.06) and a very large kurtosis of 0.88 (the lat-
ter was small for the analysis with no magnetic field), cf.
Ref [7]. We have also estimated Lempel-Ziv measure of
complexity, relative to white noise [13]. The calculated
value� 0�17 is even smaller than in [7] (� 0�20); max-
imal complexity, or randomness, would have a value of
1.0, while a value of zero denotes perfect deterministic
nonlinear predictability.

As shown in Figure 1 (b), the normalized autocorre-
lation function first fells steeply by a factor of 1�e in
one-third of hour then decreases nearly linearly (reach-
ing a value of 1�2 at 2�3 h) to 1�e at ta � 1 h,
cf. [8, a lower inset to Fig. 1] (see also Table 1). Obvi-
ously, for a periodic system the optimum time delay for
attractor reconstruction would be one-quarter of the natu-
ral orbital period, i. e., the first zero of the autocorrelation
function. Therefore, we choose a time delayτ � 150∆t,
where the autocorrelation function has the first minimum
and its value is very small. This value is smaller than
t0 � 376∆t, the first zero of the autocorrelation function,
��x�t�x�t � t0��� �x�t��

2��σ2 � 0 with average velocity
�x���0�36 km s�1 and standard deviationσ � 8�54 km
s�1, cf. alsota in Table 1 when the autocorrelation func-
tion decreases to 1�e.

Using our time series of equally spaced, detrended
and cleaned data, we construct a large number of vectors
X�ti� = �x�ti��x�ti � τ �� � � � �x�ti ��m�1�τ � � in the em-
bedding phase space of dimensionm, wherei � 1� � � � �n
with n � N� �m�1�τ . Then, we divide this space into
a large numberM�r� of equal hypercubes of sizer
which cover the presumed attractor. Ifp j is the prob-
ability measure that a point from a time series falls
in a typical j-th hypercube, using theq-order function
Iq�r� � ∑�p j�

q� j � 1� � � � �M, theq-order generalized di-
mension is given by [2]

Dq �
1

q�1
lim
r�0

ln Iq�r�
lnr

� (1)

We see from Eq. (1) that the largerq is, the more strongly
are the higher probability cubes (visited more frequently
by a trajectory) weighted in the sum forIq�r�. Only if
q � 0, all the cubes are counted equally,Io � M, and we
recover the box-counting dimension,D0.

Writing Iq�r� � ∑ p j�p j�
q�1 as a weighted average

��p j�
q�1�, one can associate bulk with the generalized

average probability per hypercubeµ � q�1
�
��p j�

q�1�,

and identifyDq as a scaling of bulk with size,µ ∝ rDq .
Since the data cannot constrain well the capacity dimen-
sion D0, we look for higher order dimensions, which
quantify the multifractality of the probability measure on
the attractor. For example, the limitq� 1 leads to a geo-
metrical average (the information dimension). Forq � 2
the generalized average is the ordinary arithmetic aver-
age (the standard correlation dimension), and forq � 3 it
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TABLE 1. Characteristics of the solar wind,v� vA, filtered data.

Smoothed Shuffled data Shuffled phases

Skewness,κ3 0.26 0.26 -0.26
Kurtosis,κ4 0.88 0.88 0.26
Relative complexity 0.17 1.0 0.23
Autocorrelation time,ta 3�5�103 s 40 s 3�3�103 s
Capacity dimension,D0 4.4 5.8 4.6
Information dimension,D1 4.0 5.0 4.5
Correlation dimension,D2

� 3.5 5.2 4.6

� The average slope for 6�m� 8 is taken asD2.

is a root-mean-square average. In practice, for a givenm
andr,

p j �
1

n�2nc�1

n

∑
i�nc�1

θ�r� � X�ti��X�t j� �� (2)

with θ�x� being the unit step function, andnc � 2 is
the Theiler’s correction [14]. Finally,Iq�r� is taken to be
equal to the generalizedq-point correlation sum [12]

Cq�m�r� �
1

nref

nref

∑
j�1

�p j�
q�1� (3)

wherenref � 500 is the number of reference vectors. For
large dimensionsm and small distancesr in the scaling
region it can be argued thatCq�m�r� ∝ r�q�1�Dq , where
Dq is an approximation of the ideal limitr� 0 in Eq. (1)
for a givenq, Ref. [12].

First, we calculate the natural logarithm of the stan-
dard (q� 2) correlation sumCm�r� �C2�m�r� versus lnr
(normalized) for various embedding dimensions:m �
4 (dotted curve),m � 5 (diamonds), 6 (triangles), 7
(squares), and 8 (crosses) signs. The slopesD2�m�r� �
d�lnCm�r���d�lnr� in the scaling region ofr should pro-
vide the correlated dimension. The results obtained us-
ing the moving average filter are presented in Figure 2,
while those obtained using the singular-value decompo-
sition and nonlinear Schreiber filters have been discussed
in [7, 9]. Since the correlation sum is simply an arith-
metic average over the numbers of neighbors, this can
yield meaningful results for the dimension even when
the number of neighbors available for some reference
points is limited in most real dynamical systems. If the
D-dimensional attractor exists, we expect a plateau of the
slopes form�D and in the worst case form � 2D. Form
large enough an average slope in the scaling region indi-
cates a proper correlation dimensionD2. We have a clear
plateau which appears already form � 4 (dotted curve)
andm � 5. For higher dimensions,m � 8, the plateau is
still present but more smeared out by the statistical fluc-
tuations at smallr. In our case the slope of the calculated
correlation sum saturates form � 5, with an average for

6	 m	 8 of D2 � 3�5
0�1, cf. Ref. [7]; this is consis-
tent with the attractor of the low-dimension.

Second, the generalized dimensionsDq in Eq. (1) as
a function of q are shown in Figure 3. The spectrum
of dimensions shows multifractal structure of the solar
wind in the inner heliosphere. For comparison, an ex-
tremely simple example of the multifractal system is the
weighted Cantor set, where the probability of visiting
one segment isp (say p 	 1�2) and the probability of
visiting the other segment is 1� p. In this case the re-
sults can be obtained analytically; for anyq in Eq. (1)
one has

�1�q�Dq � log3�p
q ��1� p�q�� (4)

The difference of the maximum and minimum dimen-
sion, associated with the least dense and most dense
points on the attractor, correspondingly, isD

�∞�D∞ �
log3�1�p�1� and in the limitp� 0 this difference rises
to infinity. Hence, the parameterp can be regarded as
a degree of multifractality. The results ofDq � 3 calcu-
lated for p � 0�1 in Eq. (4) are also shown in Figure 3
by a dash-dotted line. We see that forq � 1 the multi-
fractal spectrum of the solar wind is roughly consistent
with that for the multifractal measure on the self-similar
weighted Cantor set, with a single weighting parameter
p. The obtained value of this parameter demonstrates that
some cubes that cover the attractor of this dynamical sys-
tem are visited one order of magnitudes more frequently
than some other cubes, as is illustrated in our previous
paper, see Figure 5 of Ref. [7].

We also estimate the Kolmogorov correlation en-
tropy, K2, and the largest positive Lyapunov exponent,
λmax. The vertical spacings between the parallel lines
in Figure 2 of Ref. [10] averaged in the saturation re-
gion 8	 m 	 10 are taken asK2 yielding the value
of � 0�1 (per delay timeτ ). Using the algorithm of
Ref. [15] and nonlinear noise reduction, one obtains the
magnitude ofλmax � 0�1 in the same units as forK2
(base e). In general, the entropyKq is at most the sum
of the positive Lyapunov exponents∑λi, e.g., [2]. The
value of the Lyapunov exponent is consistent with the
Kolmogorov (q � 2) entropy, which should be its lower
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m = 4
m = 5
m = 6
m = 7
m = 8

FIGURE 2. The slopesD2�m�r� � d�lnCm�r���d�lnr� for
the correlation sumCm�r� versus lnr (normalized) obtained
for the cleaned experimental signal for various embedding
dimensions:m � 4 (dotted curve),m � 5 (diamonds), 6
(triangles), 7 (squares), and 8 (crosses).

FIGURE 3. The generalized dimensionsDq in Eq. (1) as a
function of q. The correlation dimension isD2 � 3�5� 0�1,
see Table 1. The values ofDq �3 calculated analytically for
the weighted Cantor set withp � 0�1 (dash-dotted).

bound:K2 	 ∑λi (positive). The time over which the
meaningful prediction of the behavior of the system is
possible is roughly� 1�λmax, e.g., [2]. Hence the pre-
dictability of the system is limited to hours.

The obtained measures of the attractor have been sub-
jected to the surrogate data test [11]. As has been demon-
strated in Figure 8 of Ref. [7], if the original data are in-
deed deterministic, analysis of these surrogate data will
provide values that are statistically distinct from those
derived for the original data, see also Table 1. In partic-
ular, the slope of the correlation sum increases withm
(no saturation), and Lempel-Ziv complexity calculated
for shuffled-data becomes clearly 1.0, as it should be for
a purely stochastic system. Again, we have found that the
solar wind data are sensitive to this test.

In conclusion, we have shown that the moving aver-
age filter removes some amount of noise, which is suffi-
cient to calculate the generalized dimensions of the so-
lar wind attractor. The obtained multifractal spectrum is
consistent with that for the multifractal measure on the
self-similar weighted Cantor set with a degree of multi-
fractality of p � 0�1. The obtained characteristics of the
attractor are significantly different from those of the sur-
rogate data. Thus these results show multifractal struc-
ture of the solar wind in the inner heliosphere. Hence we
suggest that there exists an inertial manifold for the solar
wind, in which the system hasmultifractal structure, and
where noise is certainly not dominant.

This work has been done in the framework of the Eu-
ropean Commission Research Training Network Grant
No. HPRN-CT-2001-00314.
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