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• We formulate a line preserving magnetic field flow equation using Euler potentials.
• We find constraints on a non-reconnective general resistivity term in Ohm’s Law.
• We propose a new method of detecting magnetic reconnection.

a r t i c l e i n f o

Article history:
Received 23 November 2012
Accepted 11 March 2013
Available online 18 March 2013

Keywords:
Magnetic reconnection
Magnetic topology
Euler potentials
Field line flows

a b s t r a c t

We consider behavior of finite magnetic field lines during recon-
nection processes.We portray field linemotions using Euler poten-
tials representation. Here, we propose a new insight into plasma
flow fields related with magnetic reconnection. In this approach
reconnection is treated as a breakage of magnetic topology, which
results in deviation from the line preserving flow regime. We de-
rive constraints and the general equations for these flows. In our
approach the flux preserving flows are treated as a special case of
line preserving regime. We also derive a constraint on a non-ideal
term in Ohm’s Law within diffusion regions, which relates plasma
flow with resistivity, and which must hold for non-reconnective
diffusion.We also propose a newmethod of detectingmagnetic re-
connection.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic reconnection is a very important process in many areas of physics. Applications of
this process range from laboratory to astrophysical plasmas. However, the basic mechanism of
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reconnection is still not understood fully. Even its appropriate definition is not commonly agreed and
many researchers would like to stress certain aspects of the reconnection processes.

At the beginning of the reconnection studies the subject was usually treated as a two-dimensional
problem only. After introducing early concepts (see e.g. [1–3]), researchers started to develop also
three-dimensional reconnection models. It turned out that this three-dimensionality allowed a wide
spectrum of new configuration magnetic fields, but because of that this subject began to be much
more complicated [4,5]. As the theory is still under development and no simple description exists it
appears that two aspects of reconnection are investigated separately. The first, finite-B reconnection
is a regime where magnetic reconnection occurs, but there are no magnetic singularities, nor null
points (see e.g. [6]). The second, zero-B reconnection includes regimes with reconnection occurring in
magnetic null points or on separator lines (see e.g. [7,8]). Kinetic particle studies are usually conducted
in zero-B regime (see e.g. [9]). A recent review on three-dimensional magnetic reconnection can be
found in the papers by Yamada et al. [10] or by Pontin [11].

In the present paper we adopt the concept of general magnetic reconnection developed by Axford
[12] and subsequently by Schindler, Hesse and Birn [13]. Therefore, we consider magnetic reconnec-
tion as a process, in which magnetic connection of plasma elements breaks down; this means that a
change in magnetic field topology takes place in the reconnection process. We consider only finite-B
reconnection, that is processes without null points of B in the considered region as e.g. slip-running
reconnection [14].

In particular, we can distinguish two kinds of motions. The first one and more general is a line
preserving motion. In this case every point on a given field line remains on the same line. The second
motion we can distinguish is a flux preserving motion. It has a property that any loop moving with
velocity field U(r, t), where r is a position vector at time t , will preserve field’s flux through the loop.

Therefore, the condition for a line preserving motion for a magnetic field B is given by

B ×


∂B
∂t

− ∇ × (U × B)


= 0, (1)

whereas for a flux preserving motion we have

∂B
∂t

− ∇ × (U × B) = 0. (2)

We see that any flux preserving motion is also line preserving, but not the opposite.
Now if we find actual plasma flow with velocity field V(r, t) that satisfies Eqs. (1) or (2), i.e.

if U(r, t) = V(r, t), we may say that the flow is line or flux preserving, respectively. According to
our definition of magnetic reconnection we can say that the reconnection process occurs when line
preserving condition in Eq. (1) is not satisfied.

2. Euler potentials

We use Euler potentials representation of magnetic fields. A comprehensive review on Euler
potentials can be found in the paper by Stern [15]. It can be shown that a divergence free vector can
be, at least locally, represented as a cross product of two gradients of scalar functions. Therefore, we
can write

B = ∇α × ∇β, (3)

where α and β are functions of coordinates x, y, z. And because B has a magnetic vector potential A,
i.e. B = ∇ × A, we obtain

A = α∇β. (4)

Eqs. (3) and (4) are equivalent to a local choice of an electromagnetic field gauge

A · B = 0. (5)
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One sees from Eq. (3), that magnetic field lines are tangential to families of surfaces defined by
α = const. and β = const. Naturally, a givenmagnetic field line is defined by the intersection of these
surfaces. Admittedly, a choice of α and β is not unique and the same field line may be represented by
another potentials pair, say g(α, β) and h(α, β), provided that

∂(g, h)
∂(α, β)

= 1. (6)

Obviously Euler potentials representation may not be used when B vanishes, e.g. in magnetic null
points. However,we see that if onlyB ≠ 0, it is always possible to locally derive a set of Euler potentials
describing B in a form of Eq. (3), see Ref. [16]. For given α and β families, we can also choose a local
curvilinear coordinate system (α, β, s), where s is a function of x, y, z and s is an arc length on the
magnetic field line. This means that while moving along the s-axis we are always staying on the same
magnetic field line.

3. Field line motions

We now derive equations for a more general, line preserving flows following Vasyliunas’ approach
for a flux preserving case, see Ref. [17]. Substituting B = ∇ × A to Eq. (1) and excluding curl from it
we obtain

B ×


∇ ×


∂A
∂t

− U × B


= 0. (7)

We see that in this equation the term in square bracket must be a linear combination of vector B.
Hence one can write

∇ ×


∂A
∂t

− U × B


= ζ̃B, (8)

where ζ̃ = ζ̃ (α, β) is any function of α and β . It is important to note, that ζ̃ does not depend on
arc length s. If it were a function of s, then B would change along s-axis, but our coordinate system is
chosen so that B is constant on s-axis.

Considering vector identity

ζ (∇ × A) = ∇ × ζA + A × ∇ζ (9)

we see that if ζ is a function of α and β only, i.e. ζ = ζ (α, β) then

A × ∇ζ = α∇β ×


∂ζ

∂α
∇α +

∂ζ

∂β
∇β


= −α

∂ζ

∂α
(∇ × A),

so

∇ × ζA =


ζ + α

∂ζ

∂α


(∇ × A). (10)

Without limiting generality we can set

ζ̃ = ζ + α
∂ζ

∂α
(11)

and by substituting B = ∇ × A into Eq. (8) we obtain

∇ ×


∂A
∂t

− ζA − U × B


= 0. (12)

We can integrate this equation to obtain

∂A
∂t

− ζA − U × B = ∇χ, (13)

where χ is any scalar function of α, β , and s, i.e. χ = χ(α, β, s), such that the curl of ∇χ vanishes.
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Now we construct a left hand side dot product of Eq. (13) with B

B ·
∂A
∂t

− B · ζA − B · (U × B) = B · ∇χ. (14)

Note that two terms on the left hand side of Eq. (14) vanish: the second one because of the chosen
gauge condition and the third one because of simple vector identity. We have thus the following
condition for χ

B ·
∂A
∂t

= B · ∇χ. (15)

It can be shown that

B ·
∂A
∂t

= B · ∇


α

∂β

∂t


. (16)

Without limiting the generality of our considerations, we can set χ = α
∂β

∂t −Λ, whereΛ is a function
of α and β only, but not depending on s. Using Eq. (16) we see that such χ satisfies Eq. (15). Thus from
Eq. (13) we obtain the following equation for the case of line preserving flow

U × B =
∂A
∂t

− ζA − ∇χ

=
∂α

∂t
∇β −

∂β

∂t
∇α − ζα∇β + ∇Λ. (17)

In general, Eq. (17) may not be solved explicitly for U. Only in special cases do explicit analytical
solutions exist. However, Eq. (17) is a necessary condition for a flow to be line preserving as it is
an equivalent of Eq. (1) in finite-B regime. So if any plasma flow with actual velocity field V(r, t)
satisfies this equation, i.e. if U(r, t) = V(r, t), we know that reconnection does not occur. Otherwise,
if given flow V(r, t) does not satisfy Eq. (17), then themagnetic connection of plasma elements breaks
down and some reconnection processes are present. Note that because Eq. (17) involves two arbitrary
functions ζ and Λ, then there exists an infinite number of solutions for the case of the line preserving
motions. Furthermore, any line preserving flow can be described by choosing relevant functions ζ
and Λ. However, we do not state that those functions in analytical form may always be found.

If we set ζ̃ = 0, we recover a special case of line preserving flow, namely a flux preserving flow
equation that was obtained by Vasyliunas, see Ref. [17]. Eq. (8) then becomes a flux preservingmotion
condition as given in Eq. (2).

Setting Λ = α
∂β

∂t + cΦ , where Φ is an electric field potential and c is a speed of light, in the flux
preserving casewewould obtain ‘‘E×B’’ drift velocityU = VB = c E×B

B2
, see Ref. [17]. In amore general

line preserving case, we obtain analogous drift, but with velocity

U = ṼB = c
(E +

ζ

c A) × B
B2

. (18)

Sowe have formulated line preserving field linemotions using Euler potentials representation.We
have shown that our approach generalizes Vasyliunas’ formulation for flux preserving motions [17],
which is a special case of our line preserving motions approach. Our formulation allows to express
reconnection of magnetic fields as a breakage of the line preserving regime.

4. Ohm’s law

Finite-Bmagnetic reconnection takes place in so called diffusion regions. These are localized zones,
where ideal Ohm’s Law is not satisfied. However the existence of a diffusion region does not imply
occurrence of magnetic reconnection as there are possible line preserving flows within the region.
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Let us now consider Ohm’s Law. It can be written as

E +
1
c
U × B = R, (19)

where R is a non-ideal term in a general form. We do not consider here any particular form of R,
but it can consist of many different terms like ion pressure, Hall effect, electron inertia, and other
terms. We do not want to focus on physical mechanisms of non-idealness of Ohm’s Law, however
many researchers study magnetic reconnection on this fundamental levels (see e.g. [18]) and do it
with great results (e.g. [19]). Thus, we would like to address only general properties of R.

To seewhat restrictions are imposed on R to satisfymagnetic line preservationwe substituteU×B
from Eq. (17) into Eq. (19). So we have

cR = −c∇Φ − ∇


α

∂β

∂t


− ζα∇β + ∇Λ. (20)

We can decompose vector R into ∇α, ∇β , and ∇s components. In general it has the form

R = Rα∇α + Rβ∇β + Rs∇s, (21)

where Rα , Rβ , Rs are functions of α, β , and s. From Eq. (20) we write

cR = −c
∂Φ

∂α
∇α − c

∂Φ

∂β
∇β − c

∂Φ

∂s
∇s +

∂Λ

∂α
∇α +

∂Λ

∂β
∇β

−


∂

∂α


α

∂β

∂t


∇α −


∂

∂β


α

∂β

∂t


∇β −


∂

∂s


α

∂β

∂t


∇s − ζα∇β. (22)

Cross coordinates derivatives vanish so terms in square brackets are as follows:

∂

∂α


α

∂β

∂t


=

∂β

∂t
, (23a)

∂

∂β


α

∂β

∂t


=

∂α

∂t
, (23b)

∂

∂s


α

∂β

∂t


= 0. (23c)

Finally, we obtain

Rα = −
∂Φ

∂α
+

1
c

∂Λ

∂α
−

1
c

∂β

∂t

Rβ = −
∂Φ

∂β
+

1
c

∂Λ

∂β
−

1
c

∂α

∂t
−

1
c
ζα

Rs = −
∂Φ

∂s
.

(24)

Now we differentiate Rα and Rβ with respect to β and α, respectively, obtaining
∂Rα

∂β
= −

∂2Φ

∂α∂β
+

1
c

∂2Λ

∂α∂β
−

1
c

∂

∂β

∂β

∂t

∂Rβ

∂α
= −

∂2Φ

∂α∂β
+

1
c

∂2Λ

∂α∂β
−

1
c

∂

∂α

∂α

∂t
−

1
c
ζ −

1
c
α

∂ζ

∂α

(25)

and then subtracting both sides of those equations we obtain

ζ + α
∂ζ

∂α
+ c

∂Rβ

∂α
− c

∂Rα

∂β
= 0 (26)
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or shortly

ζ̃ + c
∂Rβ

∂α
− c

∂Rα

∂β
= 0. (27)

Eq. (26) relates function ζ with resistivity. This equation has to be satisfied in order to have line
preserving flow. Thus setting one of the two quantities, ζ or R, we obtain the constraint on the second
quantity.

Differentiating Eq. (27) with respect to s gives

∂ζ̃

∂s
+ c

∂2Rβ

∂s∂α
− c

∂2Rα

∂s∂β
= 0 (28)

and remembering that ζ̃ does not depend on swe obtain

∂2Rβ

∂s∂α
=

∂2Rα

∂s∂β
. (29)

Eq. (29) is equivalent to the Eq. (26) from the paper by Hesse and Schindler [20]. Differentiating Rα

and Rβ from (24) with respect to swe obtain
∂Rα

∂s
= −

∂2Φ

∂s∂α
+

1
c

∂2Λ

∂s∂α
−

1
c

∂

∂s
∂β

∂t
∂Rβ

∂s
= −

∂2Φ

∂s∂β
+

1
c

∂2Λ

∂s∂β
−

1
c

∂

∂s
∂α

∂t
−

1
c
ζ

∂α

∂s
−

1
c
α

∂ζ

∂s
,

(30)

which gives us
∂Rα

∂s
=

∂Rs

∂α

∂Rβ

∂s
=

∂Rs

∂β
.

(31)

Eqs. (31) are the sameas Eqs. (27a) and (27b) from the samepaper byHesse and Schindler, see Ref. [20].
They provided a proof that in such a general form R satisfies

B × (∇ × R) = 0, (32)

i.e. the line preservation condition.
Let us now consider a flux preserving flow. We see that Eq. (27) becomes simply

∂Rβ

∂α
=

∂Rα

∂β
. (33)

We see that differentiating with respect to s gives us Eq. (29) and similarly it can be shown that our
flow is obviously line preserving. We have that Eq. (24) become

Rα = −
∂Φ

∂α
+

1
c

∂Λ

∂α
−

1
c

∂β

∂t

Rβ = −
∂Φ

∂β
+

1
c

∂Λ

∂β
−

1
c

∂α

∂t

Rs = −
∂Φ

∂s
.

(34)

To verify flux preservation we need to show that

∇ × R = 0. (35)
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Fig. 1. Configuration of magnetic field and plasma velocity field in the example.

We can write ∇ × R in ∇α, ∇β , ∇s decomposition

∇ × R =


∂Rβ

∂α
−

∂Rα

∂β


∇α × ∇β +


∂Rs

∂α
−

∂Rα

∂s


∇α × ∇s

+


∂Rs

∂β
−

∂Rβ

∂s


∇β × ∇s. (36)

By substituting (34) into this equation we obtain required condition of Eq. (35).
Summarizing, we have shown that our model is consistent with the general magnetic reconnection

concept developed by Axford [12] and by Schindler, Hesse and Birn [13]. Within the concept we have
formulated Ohm’s Law in a general form and constraints on resistivity term, particularly as given by
Eq. (26). We think it can be used as a new way of detecting reconnection. An example below presents
this method.

5. Example

All actual measurements are restricted to a certain level of accuracy only. Estimated layout of
magnetic field and plasma flow structure might be different from the real values. Therefore we can
expect that reconnection appearance is possible even though fromdirect inaccuratemeasurement and
anticipations it should not be. Given that, we can use Eq. (26) and estimates of resistivity to validate
measurements from experiments and to checkwhethermagnetic reconnection occurs in the analyzed
case.

Note that usage of Euler potentials representation is limited to such configurations in which Euler
potentials can be defined globally or at least within the whole region of interest. As an example we
inspect a simple laboratory plasma case.

We consider a plane potential compressible flow in a form of a source described by the velocity
potential ϕ(y, z) =

−Q√
y2+z2

, where Q is a constant. We add uniform magnetic field B perpendicular

to the flow plane. We suppose that B is weak enough not to disturb the flow velocity V. The flow is
a line preserving flow, but it is not flux preserving one. We choose the (x, y, z) coordinate system so
that B is aligned with the x-axis and the plasma flows in the yz-plane as illustrated in Fig. 1.

In this case V = [0, vy, vz] and B = [Bx, 0, 0]. This gives us the opportunity to choose such Euler
potentials coordinate system (α, β, s) that both systems have parallel axes—x to s, y to α, and z to β ,
respectively. Therefore the transformation between coordinate systems is given simply by

α = ay
β = bz
s = rx,

(37)

where a, b, and r are some constants.
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We now set Bx = ab, vy =
Qy

(y2+z2)3/2
and vz =

Qz
(y2+z2)3/2

. It can be shown that flow V in field B in
such a form is line preserving, but is not flux preserving. We also see from Eq. (17) that setting V and
B in this form is equivalent with setting

ζ =
−2Qab3

β2(a2β2 + b2α2)1/2

Λ =
2Qab3α

β(a2β2 + b2α2)1/2
.

(38)

We can now solve flow–resistivity equation (26). In this simple case we have

−
2Qa3b3

c(a2β2 + b2α2)3/2
+

∂Rβ

∂α
−

∂Rα

∂β
= 0. (39)

This equation holds if Rα =
kQa3bβ

cα2(a2β2+b2α2)1/2
and Rβ =

(k+2)Qab3α
cβ2(a2β2+b2α2)1/2

, where k is a constant. Be-
cause Rs can have any value, we can simply set Rs = 0. Then resistivity expressed using (x, y, z)
coordinates is

Rα =
kQbz

cy2

z2 + y2

Rβ =
(k + 2)Qay

cz2

z2 + y2

Rs = 0.

(40)

We see that sets of values of Rα and Rβ define specific surfaces. This calculated resistivity is a
constraint for the given flow to be line preserving. If we know that we are dealing with the given
flow and magnetic field, then the actual resistivity must be as resistivity presented in Eqs. (40)
with Rs having any value. Therefore, any deviations ofmeasured resistivities from above dependencies
indicate that reconnection occurs.

6. Conclusions

Wehave explainedmagnetic line preserving flows during finite-B reconnection processes by using
Euler potentials representation. In this paper we have obtained some general equations for these
processes. In particular, a flux preserving flow appears to be a special case of our newly proposed
more general model.

We have also found constraints on general resistivity term in Ohm’s Law for a general line preserv-
ing condition. It relates plasma flow field with the local resistivity. We have shown that this condition
is consistentwith a concept ofmagnetic reconnection originally proposed byHesse and Schindler [20].
Applying this relation we have proposed a new method of detecting magnetic reconnection.

Admittedly, application of Euler potentials to magnetic reconnection processes should be used
with care. It is important to bear in mind mathematical restrictions of this representation. In general
Euler potentials can be defined only locally. Its global usage is restricted to instances of appropriate
magnetic field configurations or suitable boundary conditions. Whereas in laboratory plasmas this
should not be of a major problem as specific experiments can be suitably designed; in space plasmas
however this might be a greater concern.

The number of magnetic reconnection studies based on three-dimensional numerical modeling
has been growing recently (for finite-B reconnection see e.g. [21,22]). Although Euler potentials
formulation is not common, we think that our flow–resistivity constraintmight be useful, for instance
as an indicator of reconnection occurrence in appropriately designed numerical models.

It is known that due to new space missions growth of observational data contribute to a better
understanding of reconnection problems (see e.g. [23]). We therefore hope that our flow–resistivity
constraint might be used as a newway of detecting reconnection sites, provided plasma flow in given
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magnetic field and resistivity are derived from in situmeasurements andmagnetic field configuration
appears to be suitable for Euler potentials application. We are aware that further study of the theory
as well as its application is still required.
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