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Abstract

By using the false-nearest-neighbours method, we have argued that the deterministic component of solar wind plasma dynamics
should be low-dimensional. In fact, the results we have obtained using the method of topological embedding indicate that the behaviour
of the solar wind can be approximately described by a low-dimensional chaotic attractor in the inertial manifold, which is a subspace of
system phase space. We have also shown that the multifractal spectrum of the solar wind attractor is consistent with that for the mul-
tifractal measure of the self-similar generalized weighted Cantor set with two different scaling parameters and one probability measure
parameter responsible for nonuniform compression in phase space and multifractality. The values of the parameters fitted also demon-
strate that the complex solar wind system could only be weakly non-conservative (small dissipation) and quantify nonlinear dynamics;
some parts of the attractor in phase space are visited much more frequently than other parts. In addition, to quantify the multifractality
of space plasma intermittent turbulence, we consider that generalized Cantor set also in the context of scaling properties of solar wind
turbulence. We investigate the resulting multifractal spectrum of a one-dimensional phenomenological model of turbulence cascade
depending on its parameters, especially for asymmetric scaling. In particular, we have shown that intermittent pulses are stronger for
the cascade model with two different scaling parameters. Even thought solar wind turbulence appears to be rather space filling, a better
agreement with the data is obtained, especially for the negative index of generalized dimensions. Therefore we argue that there is a need
to use a two-scale asymmetric cascade model. We hope that this generalized multifractal model will be a useful tool for analysis of inter-
mittent turbulence in space plasmas. We thus believe that fractal analysis of chaotic systems could lead us to a deeper understanding of
their nature, and maybe even to predict their seemingly unpredictable behaviour.
� 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Importance of chaos and multifractality

Nonlinear dynamical systems are often highly sensitive
to initial conditions resulting in chaotic phenomena. Chaos
is thus an aperiodic long-term behaviour in a deterministic
system that exhibits sensitivity to initial conditions (e.g.
Strogatz, 1994). In non-conservative systems (with dissipa-
tion) the trajectories describing its evolution in the phase
space may asymptotically converge towards a certain
invariant set that is called an attractor. In such a system

chaos requires the low-dimensional attractor and determin-
istic nonlinear time evolution. In infinite-dimensional sys-
tems or systems with very large dimension it is often the
case that one can show that there exists a low-dimensional
subspace, the so-called inertial manifold, to which the orbit
tends and on which the attractor lies (e.g. Ott, 1993).

We remind that a fractal is a rough or fragmented geo-
metrical object that can be subdivided in parts, each of
which is (at least approximately) a reduced-size copy of
the whole. Strange attractors are often fractal sets, which
exhibits a hidden order within chaos. Fractals are generally
self-similar and independent of scale (with a fractal
dimension). A multifractal is an object that demonstrate
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various self-similarities, described by a multifractal spec-
trum of dimensions. One can say that self-similarity of mul-
tifractals is scale dependent resulting in singularity
spectrum. A multifractal is therefore in a certain sense like
a set of intertwined fractals. More precisely, one may dis-
tinguish a probability measure from its geometrical
support, which may or may not have fractal geometry.
Then, if the measure has different fractal dimensions on dif-
ferent parts of the support, the measure is multifractal
(Mandelbrot, 1989).

The nature of the fluctuations in solar wind plasma
parameters is still little understood. The slow solar wind
most likely originates from nonlinear processes in the solar
corona. The fast wind associated with coronal holes is rel-
atively uniform and stable, while the slow wind is more tur-
bulent and consequently quite variable in terms of
velocities. Fortunately, it appears that a certain kind of
order does lie concealed within the irregular solar wind
fluctuations, which can be described using methods of non-
linear time series analysis, based on fractal analysis and the
theory of deterministic chaos. This involves the notions of
fractal and multifractal sets, which could be presumably
strange attractors in a certain state space of a given com-
plex dynamical system. By employing the so-called false-
nearest-neighbours method, we argue that the deterministic
component of solar wind plasma dynamics should be low-
dimensional (e.g. Macek and Strumik, 2006). In fact, the
results we have obtained using the method of topological
embedding indicate that the behaviour of the solar wind
can be approximately described by a low-dimensional cha-
otic attractor in the inertial manifold, which is a subspace
of system phase space.

A direct determination of a solar wind attractor from
the data is known to be a difficult problem. Indication of
a chaotic dynamics in the magnetic field fluctuations has
been provided by Polygiannakis and Moussas (1994a),
Polygiannakis and Moussas (1994b) using Heos (at
1 AU) and Pioneer (5–10 AU) data in the solar wind, and
ICE data in the cometary environment. The chaotic strange
attractor has been identified by Macek (1998) using Helios
measurements of velocity fluctuations in the solar wind as
further examined by Macek and Redaelli (2000). In partic-
ular, Macek (1998) has calculated the correlation dimen-
sion of the reconstructed attractor in the solar wind and
has provided tests for this measure of complexity including
statistical surrogate data tests (Theiler et al., 1992). Fur-
ther, Macek and Redaelli (2000) have shown that the
Kolmogorov entropy of the attractor is positive and finite,
as it holds for a chaotic system.

We have also considered the spectrum of generalized
dimensions Dq as a function of a continuous index,
�1 < q <1, for the solar wind attractor, using a multi-
fractal model with a measure of the self-similar weighted
Cantor set with one parameter describing uniform com-
pression and another parameter for the probability mea-
sure of the attractor of the system. The spectrum has
been found to be consistent with the data, at least for posi-

tive index q of the generalized dimensions Dq (Macek, 2002;
Macek, 2003; Macek, 2006; Macek et al., 2005; Macek
et al., 2006). However, the full singularity spectrum is nec-
essary to quantify the degree of multifractality. Notwith-
standing of the well-known statistical problems with
negative q (Macek, 2006), we have recently succeeded in
estimating the entire spectrum for solar wind attractor
using a generalized weighted Cantor set with two different
scales describing nonuniform compression (Macek, 2007).

The question of multifractality is also of great impor-
tance because it allows us to investigate the nature of inter-
planetary hydromagnetic turbulence in the solar wind (e.g.
Burlaga, 1991; Carbone, 1993; Marsch et al., 1996; Marsch
and Tu, 1994; Marsch and Tu, 1997; Bruno et al., 2001).
Starting from Richardson’s version of turbulence, many
authors tried to recover the observed scaling exponents,
using some simple and more advanced models of turbu-
lence describing distribution of the energy flux between
cascading eddies at various scales. In particular, the
multifractal spectrum has been investigated using Voyager
(magnetic field) data in the outer heliosphere (e.g. Burlaga,
1991; Burlaga, 2001) and using Helios (plasma) data in the
inner heliosphere (e.g. Marsch et al., 1996).

Recently, to further quantify the multifractality, we have
considered that generalized weighted Cantor set also in the
context of turbulence cascade (Macek and Szczepaniak,
2008). We have argued that there is, in fact, need to use a
two-scale cascade model. Here we investigate the resulting
multifractal singularity spectrum depending on two scaling
parameters and one probability measure parameter, demon-
strating that a much better agreement has been obtained,
especially for q < 0. We hope that this generalized new
asymmetric multifractal model could shed light on the nat-
ure of turbulence and will be a useful tool for analysis of
intermittent turbulence in various environments.

2. Two-scale Cantor set

A simple example of multifractals is the Cantor set with
two scales l1 þ l2 6 l is shown in Fig. 1. After n iterations

we have
n
k

� �
intervals of width lk ¼ lk

1ln�k
2 , where

Fig. 1. Two-scale Cantor set.
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k ¼ 1; . . . ; n. The resulting set of 2n closed intervals (more
and more narrow segments visited with various probabili-
ties) for n!1 becomes the weighted two-scale Cantor
set. One can find the two-scale Cantor set in many text-
books (e.g. Falconer, 1990; Ott, 1993), but it is still difficult
to trace complexity of this strange attractor that exhibits
multifractality in various real systems.

According to a standard scenario, each of cascading
eddies is breaking down into two new ones, but not neces-
sarily equal and twice smaller. In particular, space filling
turbulence could be recovered for the system of size
l; l1 þ l2 ¼ l (normalized, l ¼ 1). In the inertial region,
g� lk � 1, the energy is not allowed to be dissipated
directly until the Kolmogorov scale g is reached. However,
in this range at each n-th step of the binomial multiplicative
process, the flux of kinetic energy density e transferred to
smaller eddies (energy transfer rate) could be divided into
nonequal fractions p and 1� p. (cf. Macek and Szczepa-
niak, 2008, Fig. 1).

3. Solar wind data

We have extensively analyzed the Helios data using
plasma parameters measured in situ in the inner heliosphere
(Schwenn, 1990). The X-velocity (mainly radial) compo-
nent of the plasma flow, vx, has been already investigated
by Macek (1998), Macek (2002), Macek (2003) and Macek
and Redaelli (2000). The Alfvénic fluctuations with longer
(two-day) samples have been studied by Macek (2006),
Macek (2007), Macek et al. (2005) and Macek et al.
(2006). Recently, Macek and Szczepaniak (2008) have
selected even longer (four-day) time intervals of vx samples
in 1976 (each of 8531 data points, interpolated with sam-
pling time of 40.5 s) for both slow and fast solar wind
streams measured at various distances from the Sun. Here,
we analyze the multifractal spectra obtained using the
Helios 2 data. The fractal and multifractal scaling has also
been tested using Ulysses observations (e.g. Horbury and
Balogh A., 2001) and with ACE/WIND data (e.g. Hnat
et al., 2003; Hnat et al., 2007; Kiyani et al., 2007).

4. Methods of data analysis

4.1. Generalized dimensions

The generalized dimensions are important characteris-
tics of complex dynamical systems (e.g. Grassberger,
1983; Grassberger and Procaccia, 1983; Hentschel and
Procaccia, 1983; Halsey et al., 1986). Since these dimen-
sions are related to frequencies with which typical orbits
in phase space visit different regions of the attractors, they
provide information about dynamics of the systems (Ott,
1993). In the case of turbulence cascade these generalized
measures are related to inhomogeneity with which the
energy is distributed between different eddies (Meneveau
and Sreenivasan, 1991). In this way they provide informa-
tion about dynamics of multiplicative process of cascading

eddies. Here high positive values of q emphasize regions of
intense energy transfer rate, while negative values of q

accentuate low-transfer rate regions.
Let us consider the generalized weighted Cantor set

where the probability of visiting one segment of size l1 is
p (say, p 6 1=2), and for the remaining segment of size
l2 is 1� p in Fig. 1. For any q one obtains
Dq ¼ sðqÞ=ðq� 1Þ by solving numerically the following
transcendental equation (e.g. Ott, 1993)

pq

lsðqÞ
1

þ ð1� pÞq

lsðqÞ
2

¼ 1: ð1Þ

The multifractal singularity spectrum f ðaÞ as a function of
a singularity strength a is also obtained from Eq. (1) by the
following Legendre transformation

aðqÞ ¼ dsðqÞ
dq

ð2Þ

f ðaÞ ¼ qaðqÞ � sðqÞ: ð3Þ

4.2. Turbulence scaling

In the inertial range the standard q-order ðq > 0Þ struc-
ture function is scaling as

Sq
uðlÞ ¼ hjuðxþ lÞ � uðxÞjqi / lnðqÞ; ð4Þ

where uðxÞ and uðxþ lÞ are velocity components parallel to
the longitudinal direction separated from a position x by a
distance l. As is usual, the temporal scales can be inter-
preted as the spatial scales, x ¼ vswt, where vsw is the aver-
age solar wind speed (Taylor’s hypothesis). The transfer
rate of the energy flux, el, is widely estimated by

eðlÞ � juðxþ lÞ � uðxÞj3

l
: ð5Þ

It can be argued that for �1 < q <1 in some region the
total probability measure should scale with the exponent
sðqÞ � ðq� 1ÞDq asX

i

lq
i � lsðqÞ ð6Þ

where li ¼ el=h�Li is the probability measure of ith eddy in
the d-dimensional physical space. Here, for simplicity the
third moment of structure function of velocity fluctuations
in Eq. (5) is used for estimation of this measure (Marsch
et al., 1996). Recently, hydromagnetic generalization of
this approximation for the Alfvénic fluctuations is consid-
ered by Sorriso-Valvo et al. (2007).

From Eqs. (4)–(6) we have (Tsang et al., 2005)

sðqÞ ¼ dðq� 1Þ þ nð3qÞ � qnð3Þ ð7Þ
Admittedly, the structure function scaling exponent nðqÞ is
easier to measure experimentally than the spectrum of
dimensions Dq � sðqÞ=ðq� 1Þ in Eq. (6), which is easier
to interpret theoretically, see Eq. (1). Surely, as seen from
Eq. (7) both have the same information about multifractal-
ity, at least for q > 0. However, because we are also
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interested in negative q, it is more convenient to use dimen-
sions instead of structure functions.

5. Results and discussion

5.1. Dimensions for solar wind attractor and turbulence

models

First, to estimate the generalized dimensions for the
solar wind attractor we should calculate for a given contin-
uous index q and embedding dimension m the so-called
generalized correlation sum

P
lq

i ðm; lÞ as a function of
hyperspheres of radius l that cover the presumed attractor.
For positive integer q, this can be interpreted as an average
probability of finding q from N vectors in embedding space
separated by a distance smaller than l (see Macek, 2007,
Equation (3)). For large dimensions m and small distances
l in the scaling region, according to Eq. (6), it can be argued
that

P
lq

i ðlÞ / lsðqÞ, where sðqÞ is an approximation of the
ideal limit l! 0 of Eq. (1) (Grassberger and Procaccia,
1983). Hence, the slopes of the natural logarithm ofP

lqðm; lÞ versus ln l (normalized) provides

sq;mðlÞ ¼
d½ln

PN
i¼1l

q
i ðm; lÞ�

dðln lÞ : ð8Þ

If a plateau exists in a scaling region, lmin < l < lmax, which
does not depend on m for some m > m0, this plateau can be
identified as the requested generalized dimension. Finally,
the average slope for 6 6 m 6 10 on the logarithmic scales
is taken as Dq ¼ sðqÞ=ðq� 1Þ (Macek, 1998; Macek, 2006;
Macek, 2007; Macek et al., 2005; Macek et al., 2006).

The results obtained using the moving average filter and
singular-value decomposition linear filter for standard
q ¼ 2 are given by Macek et al. (2005, Fig. 2), and are com-
pared with q ¼ �2 in Fig. 2(a) and (b) of Macek (2006),
correspondingly, while those obtained for somewhat short-
er samples ðN ¼ 4514Þ have been discussed by Macek
(1998) and by Macek and Redaelli (2000) using the nonlin-
ear Schreiber filters. Next, the generalized dimensions Dq as
a function of q (cf. Macek, 2007, Equation (3)) with the sta-
tistical errors of the average slopes obtained using weighted
least squares fitting over the scaling range are shown in
Figs. 3(a) and 4(a) of the paper by Macek (2007) and com-
pared with one-scale and two-scale Cantor set model (cf.
Macek et al., 2005, Fig. 3). In the later case the value of
a parameter is s ¼ 0:47 (only slightly smaller than 1

2
) that

indicates that the complex solar wind system could only
be weakly non-conservative (small dissipation), but still
allowing for existence of some attractors of the system.

Second, the results for the generalized dimensions Dq as
a function of q, calculated from the data and compared
with those obtained using Eq. (1) for solar wind turbulence
for the slow (a) and (c) and fast (b) and (d) solar wind
streams at distances of 0.3 AU and 0.97 AU, correspond-
ingly, are presented in Fig. 3(a)–(d) of the paper by Macek
and Szczepaniak (2008).

5.2. Multifractal spectrum for turbulence

Here the results for the corresponding singularity spec-
tra f ðaÞ as a function of a singularity strength a are shown
in Fig. 2(a)–(d). The values of f ðaÞ given in Eqs. (2) and

Fig. 2. The singularity spectrum f ðaÞ as a function of a singularity strength a. The values obtained for one-dimensional turbulence are calculated for the
generalized two-scale (continuous lines) model and the usual one-scale (dashed lines) p-model with parameters fitted to the multifractal spectrum using the
vx velocity components (diamonds) for the slow (a) and (c) and fast (b) and (d) solar wind streams at distances of 0.3 AU and 0.97 AU, correspondingly.
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(3), for one-dimensional turbulence, d ¼ 1, are calculated
using the radial velocity components u ¼ vx (in time
domain). It is well known that for q < 0 we have some
basic statistical problems (Macek, 2006; Macek, 2007).
Nevertheless, in spite of large statistical errors in Fig. 2,
especially for q < 0, the multifractal character of the mea-
sure can still clearly be discerned. Therefore one can con-
firm that both the spectrum of dimensions and singularity
spectrum still exhibit the multifractal structure of the solar
wind in the inner heliosphere (cf. Macek and Szczepaniak,
2008).

For q P 0 these results agree with the usual one-scale p-
model fitted to the singularity spectra as obtained analyti-
cally using l1 ¼ l2 ¼ 0:5 in Eq. (1) and the corresponding
value of the parameter p ¼ 0:11; 0:20; 0:11, and 0:13 for
the slow (a) and (c) and fast (b) and (d) solar wind streams
at distances of 0.3 AU and 0.97 AU, correspondingly, as
shown by dashed lines. On the contrary, for q < 0 (right
part of the singularity spectrum in Fig. 2) the p-model can-
not describe the observational results, as noted by Marsch
et al. (1996). Here we show that the experimental values are
consistent also with the singularity spectrum obtained
numerically from Eqs. (1)–(3) for the weighted two-scale
Cantor set using an asymmetric scaling, i.e., using unequal
scales l1–l2, as is depicted in Fig. 2(a)–(d) by continuous
lines. By using the Helios 2 data we also confirm the univer-
sality of the shape of the multifractal spectrum shown in
Fig. 2 for both slow and fast streams and various heliocen-
tric distances, as noticed, e.g., by Burlaga (2001). In our
view, the obtained shape of the multifractal spectrum
results not only from the nonuniform probability of the
energy transfer rate but mainly from the multiscale nature
of the cascade.

Finally, we see that the multifractal spectrum of the
solar wind is only roughly consistent with that for the mul-
tifractal measure of the self-similar weighted symmetric
one-scale weighted Cantor set only for q P 0, as also seen
from the standard structure function analysis. On the other
hand, this universal spectrum is in a very good agreement
with the two-scale asymmetric weighted Cantor set sche-
matically shown in Fig. 1 for both positive and negative
q. Obviously, taking two different scales for eddies in the
cascade, one obtains a more general situation than in the
usual p-model of Meneveau and Sreenivasan (1987) for
fully developed turbulence, especially for an asymmetric
scaling, l1–2. Hence we hope that this generalized model
will be a useful tool for analysis of intermittent turbulence
in space plasmas.

6. Conclusions

In this way, we have supported our conjecture that tra-
jectories describing the system in the inertial manifold of
phase space asymptotically approach the attractor of
low-dimension (Macek, 1998). We have shown that the
multifractal spectrum of the solar wind attractor is consis-
tent with that for the multifractal measure of the general-

ized two-scale weighted Cantor set. The values of the
parameters fitted for l1 þ l2 � 1 and p � 10�1 for the slow
wind demonstrate that the complex solar wind plasma
could only be weakly non-conservative (small dissipation)
and quantify its nonlinear dynamics; some parts of the
attractor in phase space are visited at least one order of
magnitudes more frequently than other parts as illustrated
in (Macek, 1998, Fig. 5).

We have also studied the inhomogeneous rate of the
transfer of the energy flux indicating multifractal and inter-
mittent behaviour of solar wind turbulence in the inner
heliosphere. In particular, we have demonstrated that for
the model with two different scaling parameters a much
better agreement with the real data is obtained, especially
for q < 0. Basically, the generalized dimensions for solar
wind are consistent with the generalized p-model for both
positive and negative q, but rather with different scaling
parameters for sizes of eddies, while the usual p-model
can only reproduce the spectrum for q P 0. It appears that
solar wind turbulence is rather space filling, even though,
in general, the proposed generalized two-scale weighted
Cantor set model should also be valid for non space filling
turbulence. Therefore we propose this cascade model
describing intermittent energy transfer for analysis of tur-
bulence in various environments.

Thus these results show multifractal structure of the
solar wind in the inner heliosphere. Hence we suggest that
there exists an inertial manifold for the solar wind, in which
the system has multifractal structure, and where noise is
certainly not dominant. The multifractal structure, con-
vected by the wind, might probably be related to the com-
plex topology shown by the magnetic field at the source
regions of the solar wind.
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