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Abstract

We analyse stability of the generalized four-variable Rössler oscillating system depending on selected control parameters, by using analytic
and Hurwitz–Routh methods. In contrast to the usual three-dimensional Rössler and Lorenz systems, we show that always there exists at least one
unstable direction, and the number of positive local Lyapunov exponents may be different for both fixed points. We have found two new types
of Hopf bifurcation, in which the dimension of the unstable manifold can be increased or reduced by two. Hence there are many possibilities
for hyperchaotic unstable manifolds of various dimensions. We have also calculated various ranges of the control parameters for which different
unstable manifolds can be obtained. This allows a better characterization of stability of the attractors in the hyperchaotic regime.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos is a typical behaviour of nonlinear dynamical sys-
tems that exhibits sensitivity to initial conditions. It is worth
noting that usually the Lyapunov exponents are provided by
the real parts of the eigenvalues of the Jacobian matrix of the
system. Hence the main issue in such a system is stability. If
one eigenvalue of its characteristic equation is positive, then
the system has locally one unstable direction and the corre-
sponding fundamental solution would increase exponentially.
This instability could be balanced by shrinking in another sta-
ble direction, besides possible marginal stability with one zero
eigenvalue. The usual Lorenz [1] and Rössler systems [2] are
well known examples of this kind of dynamical systems. Hence
for continuous systems at least three dimensions are necessary
for chaotic behaviour with stretching and folding properties
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of trajectories. Therefore, a hyperchaotic behaviour with two
positive Lyapunov exponents is only possible for at least four-
dimensional system. An example of such a system oscillating
hyperchaotically has also been presented by Rössler [3]. How-
ever, the stability of the hyperchaotic system is more complex
and a comprehensive analysis of its dependence on the systems
parameters is still missing in the literature.

In order to analyse stability of the system we have to find
steady state (equilibrium) points and look for the eigenvalues
of the Jacobian matrix analysing the resulting characteristic
equations for each equilibrium point. The solutions of three-
dimensional polynomials can easily be obtained analytically us-
ing Cardano formulae, but for higher-order systems the proper
methods are provided by Hurwitz [4] and Routh [5] criteria.
Admittedly, in case of a four-dimensional system we can still
use analytical formulae, but only for some limited ranges of pa-
rameters. Therefore, in this Letter we use both analytical and
numerical methods to analyse stability of the Rössler oscilla-
tor and examine various ranges of the control parameters for
which different dimensions of unstable manifolds can be ob-
tained.
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2. Hyperchaotic system

Rössler presented an oscillating system containing only one
nonlinear term, but producing chaos with two directions of hy-
perbolic instability on the attractor. The generalized systems
have also been studied (e.g., [6–8]). In particular, Baier and
Sahle [6] proposed the generalized Rössler system (GRS), ob-
tained by linearly coupling additional degrees of freedom to the
original three-dimensional Rössler system [2]. The system ob-
tained in this way exhibits chaotic and hyperchaotic behaviour.
Meyer et al. [7] introduced a mode transformation of the GRS
based on the solutions of the linear subsystem, which have been
used to analyse dynamics of the GRS. In order to understand
hyperchaotic dynamics Nikolov and Clodong [8] considered
some modified hyperchaotic Rössler systems (MHRS), which
were obtained after introducing parameter b in the z equations
(b → b + b1x(t) + b2y(t) + b3z(t) + b4w(t)) [9]. They have
considered how the change of the type of the fixed points in-
fluences the prediction time in MHRS. Therefore, the modifi-
cations and generalization of the hyperchaotic Rössler model
are well described in literature, while the dependence of this
system on control parameters is still poorly known. The aim of
our work is to provide the information about stability of the sys-
tem near equilibrium points as a function of control parameters.
Here we deal with the following equations:

(1)

⎧⎪⎨
⎪⎩

ẋ = −(y + z),

ẏ = x + ay + w,

ż = b + xz,

ẇ = −cz + dw.

This system can simulate a chemical reaction scheme for the
following values of parameters: a = 0.25, b = 3.0, c = 0.5, and
d = 0.05, as described by Rössler [3]. Numerical methods show
that the attractor has two positive Lyapunov exponents, λ1 =
0.11, λ2 = 0.02, Ref. [10]. An efficient feedback control has
also be designed for this system [11].

3. Hurwitz–Routh and analytic methods

We use Hurwitz and Routh methods in order to analyse sta-
bility of the four-variable Rössler system depending on control
parameters. First, Hurwitz method informs us when all the roots
of the characteristic polynomial P(λ) = anλ

n + an−1λ
n−1 +

· · · + a1λ
1 + a0 with real coefficients have negative real parts

[4]. In this theorem we have to check when two conditions are
satisfied. A necessary but not sufficient condition is that all co-
efficients of polynomial (ai for i = 0, . . . , n) have the same
sign. A necessary and sufficient condition is that all the prin-
cipal leading minors of the Hurwitz matrix are strictly positive.
In the Hurwitz matrix the coefficients of the characteristic poly-
nomial are given on the main diagonal. All the other entries of
the matrix corresponding to coefficients with subscripts greater
than degree of polynomial or less than zero are set equal to
zero. If these two conditions are fulfilled, then the characteris-
tic polynomial is called Hurwitz, i.e., it has all its roots on the
left-hand complex plane. When conditions of Hurwitz criterion
are not satisfied, we get information that some eigenvalues have

positive real parts and hence the system is unstable. Second, an-
other Routh method [5] gives us an accurate information about
the number of positive eigenvalues. In this method the number
of roots on the right-hand plane (real part greater than zero) is
equal to the number of sign changes in the first column of the
following Routh array:

λn an an−2 an−4 . . . a0

λn−1 an−1 an−3 an−5 . . . 0
λn−2 bn−2 bn−4 . . .

λn−3 cn−1 cn−3 . . .

· ·
· ·
· ·
λ0 ·
where

bn−i = an−1an−i − anan−i−1

an−1
,

cn−i = bn−2an−i−2 − an−1bn−i−3

bn−2
.

The Routh array for n-dimensional polynomial has n + 1 rows.
Each new row is obtained from the two rows immediately above
it. Zeros in the first column represent roots on the imaginary
axis. Therefore, we use the combined Hurwitz–Routh stability
criterion as a method for determining as to whether or not a
given system is stable and what are the dimensions of unstable
manifolds. The Hurwitz–Routh method based on coefficients
in the characteristic equation of the system is particularly use-
ful for high-order systems, because it does not require to find
eigenvalues and still gives us important information about sta-
bility, e.g., [6]. Fortunately, in the case of four-variable Rössler
system we are still able to solve analytically characteristic equa-
tions at least for some range of parameters. Analytic consid-
erations consist of conversion of the normalized fourth degree
polynomial P(λ) into two quadratic polynomials

P1,2 = λ2 + (
a3 ±

√
8y + a2

3 − 4a2
)λ

2

+
(

y ± a3y − a1√
8y + a2

3 − 4a2

)

and finding the corresponding roots. Here y is the solution of
the following equation:

(2)8y3 − 4a2y
2 + (2a3a1 − 8a0)y + a0

(
4a2 − a2

3

) − a2
1 = 0.

We use analytic method only when Eq. (2) has real solutions
for y. Finally, we compare eigenvalues obtained analytically
with the numerical results and test applicability of the Hurwitz–
Routh method.

4. Bifurcations and unstable manifolds

For each of the two equilibrium points, where the first point
is denoted by S+ and second by S−, we have the characteristic
polynomial, providing that b � 0, d > 0 and c > ad . In par-
ticular, for the standard values: a = 0.25, b = 3.0, c = 0.5, and
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Fig. 1. The dimension MU of unstable manifolds for (a) S+ and (b) S− .

d = 0.05, the obtained eigenvalues for the first and second char-
acteristic polynomial are: λ1 = 0.0493731 − 0.998687i, λ2 =
0.0493731 + 0.998687i, λ3 = 0.101891, λ4 = −5.30896 and
λ1 = 0.0501792 − 0.971052i, λ2 = 0.0501792 + 0.971052i,
λ3 = 0.103929, λ4 = 5.50404, respectively.

In Fig. 1(a) and (b) we show the dimension MU of unsta-
ble manifolds as a function of two selected control parameters
for S+ or S−, respectively; the standard values are taken for the
other two fixed parameters. The dimension of unstable man-
ifolds for standard values of control parameters has been de-
noted by black points. The black lines show how MU depends
on the change of control parameters. The values of parameters
for Hopf bifurcation points (subscript H ) with purely imagi-
nary eigenvalues (Reλ = 0), which characterize behaviour of
spirals and limit cycles that appear at bifurcation, are given in
Table 1.

Table 1
Values of the parameters for Hopf bifurcation (Reλ = 0)

S+ S− �MU

aH1 0.14859 0.14708 2
aH2 5.58503 5.52458 −2
cH 0.25856 0.23845 2
dH 0.08268 0.08428 −2

Let us start with parameter b � 0 that is present together
with the nonlinear term in Eq. (1); this parameter controls the
depth of spiraling of the attractor along one axis, as has been
demonstrated in the original Rössler paper [3, Fig. 1]. The de-
pendence of the dimension of unstable manifold on b is rather
simple. For example, for a = 0.25 we have always three posi-
tive eigenvalues, MU = 3 for S+, and four positive eigenvalues,
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Fig. 2. Phase portraits of the hyperchaotic Rössler system in XYW subspace.

MU = 4 for S−. Naturally, for different value of a this result
can be modified, but there is no change of the character of sta-
bility (no bifurcation points) in the whole range of b, if the other
parameters are fixed. In addition, the analytical method could
be applied in the full range of this parameter. In particular, for
b = 0 we have only one equilibrium point x = y = z = w = 0
with one zero eigenvalue, one real and positive, and the other
complex eigenvalues with positive real parts.

On the contrary, for the next parameter a, where
0 < a < c/d = 10, the analytic method is only restricted
to some narrow part of this full range, namely (0,1.827) ∪
(8.415,10), where there exist real roots of Eq. (2), and here
the situation is much more complicated. Nevertheless, using
Hurwitz–Routh method, we have obtained the following two
values of Hopf bifurcation points: a+

H1 = 0.149, a+
H2 = 5.585

for S+, or a−
H1 = 0.147, a−

H2 = 5.525 for S−, respectively, as
given in Table 1. Therefore, as seen in Fig. 1, we have one (or
two) positive eigenvalues for a ∈ (0, a±

H1), three (or four) posi-
tive eigenvalues for a ∈ (a±

H1, a
±
H2), and again one (or two) for

a ∈ (a±
H2,10) for S+ (or S−).

On the other hand, for parameter d the analytic method is
again available for full range of parameters, where d < c/a = 2,
and we have only one bifurcation point. Here the unstable man-
ifold of dimension three, MU = 3 (or four, MU = 4), is reduced
into one- (or two-)dimensional manifold, MU = 1 (or MU = 2)
for S+ (or S−), i.e., the dimension of unstable manifold is re-
duced by two at the bifurcation point (�MU = −2). The situa-
tion is similar for c > ad = 0.0125, except that the dimension
of the unstable manifold is now increased by two at the cor-
responding bifurcation point (�MU = 2). In summary, we see
that our combined method is able to give full information about
stability of hyperchaotic dynamical systems near equilibrium
points.

It is worth noting that now there is no room for stability, in
contrast to the usual three-dimensional Lorenz [1] and Rössler
[2] systems, where the number of positive local Lyapunov ex-
ponents is the same for both fixed points. However, here for
our four-dimensional system in the whole range of parame-
ters (for a > 0 for outgoing spirals) there is always at least
one unstable direction (MU � 1, Ref. [12]), providing that the
equilibrium points exist; one could only have MU = 1 or 3 for
S+, and MU = 2 or 4 for S−. Now, for each fixed point the
number of positive local Lyapunov exponents is determined by
the dimension of the corresponding unstable manifold. We have
one or two positive exponents for S+ and two or three for S−.
Only for a small range of parameter a from a−

H2 = 5.52458 to
a+
H2 = 5.58503 we have two positive exponents for both fixed

points.
Moreover, two new types of Hopf bifurcation appear, as

listed in Table 1: one in which the dimension of unstable man-
ifold is increased, �MU = 2, and the other where this dimen-
sion is reduced, �MU = −2. Hence there are many possibili-
ties for unstable higher-dimensional hyperchaotic manifolds, as
demonstrated in Fig. 1.

5. Hyperchaotic attractor

Now, we analyse the structure of the hyperchaotic attrac-
tor for the values of the control parameter c at which different
dimensions of unstable manifolds exists (below and above val-
ues for Hopf bifurcation). The method used by us is a quasi-
constant step size implementation of the numerical differen-
tiation formulas (NDF) expressed in terms of backward dif-
ferences (also known as Gear’s method) [13]. Contrary to the
well-known Runge–Kutta technique, these formulas are the im-
plicit methods, which allows for an effective reduction of time
step, when the solution varies rapidly. The obtained results are
presented in Fig. 2. The first upper part of this figure shows the
attractor’s trajectories for the standard values of control para-
meters [3], while below we present the other phase portraits for
two other values of parameter c, namely: c = 0.35 and c = 0.2,
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i.e., above and below the characteristic values for Hopf bifur-
cations, correspondingly (cf. Table 1). For illustration of the
stretching and folding properties of trajectories on the attrac-
tor, in two upper views we have depicted trajectories that are in
black for the time interval of 4500–5000 s, and for a latter time
period of 17500–18000 s they are marked in red. This clearly
shows that the same regions of the attractor are visited at vari-
ous times by trajectories of this system. On the other hand, in
the lower image for c = 0.2, i.e., below Hopf bifurcation, we
have a trajectory for a time interval of 550–600 s (black line)
followed by a red line during a later period of 600–650 s (in
this case it is enough to integrate the system equations for much
smaller time interval of 750 s). As we see in this latter case
we have a simple outgoing spiral in phase space WYX in the
direction shown by arrows. On the contrary, for the value of pa-
rameter c above the Hopf bifurcation a “contracting” structure
of the attractor actually exists for a certain range of the control
parameter, e.g., for c = 0.5 and c = 0.35. We can expect that
difference of behaviour in the former and latter case is a result
of new types of bifurcations, characterized by a change of the
dimension of unstable manifolds at c = 0.23845 (in case of the
fixed point S−) and c = 0.25856 for S+, as given in Table 1.

6. Conclusions

The question of stability of the four-dimensional Rössler
system near equilibrium points can be fully resolved by us-
ing the combined Hurwitz–Routh and analytical methods. In
contrast to the usual three-dimensional Rössler and Lorenz sys-
tems, we have shown that there always exists at least one unsta-
ble direction and there are many possibilities for more than one-
dimensional hyperchaotic unstable manifolds, and the number
of positive local Lyapunov exponents may be different for both
fixed points. It is worth noting that two new types of transi-

tions appear at Hopf bifurcations, in which the dimension of the
unstable manifold is increased or decreased by two, correspond-
ing to the change of the number of positive local Lyapunov
exponents by one. We expect that for higher order dynamical
systems the situation could be even more complicated. But we
still recommend Hurwitz and Routh methods because they do
not require of analytical calculation of the roots of the charac-
teristic polynomials. We also hope that the Rössler oscillator
could be a useful model in many real systems, for example, for
the complex solar wind plasma as discussed, e.g., in [14,15].
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