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Influence of colored noise on chaotic systems
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We focus on classical chaotic systems corrupted by white and colored noise. We study the dependence of the
correlation dimension and the Kolmogorov entropy on the noise level and its spectral exponent. As is well
known, white noise strongly reduces the width of the scaling region for the correlation dimension and entropy.
On the contrary, we demonstrate that colored noise does not basically obscure the scaling region, changing
only the shape of the correlation sum for length scales smaller than the noise level. The numerical results show
that, even for a noise level as high as;5%, a reasonably wide plateau for the correlation sum is still obtained,
but the value of the calculated dimension is somewhat increased. The calculated correlation dimension is a
bilinear function of the noise level and the dimension of the noise, which depends on the spectral exponent of
the noise. On the other hand, the width of the scaling region for the correlation entropy depends on this spectral
exponent, but the value of the plateau does not change substantially.
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In order to detect and quantify chaos in a dynamical s
tem, it is necessary to deal with a cleaned signal. Both
correlation dimension and the Kolmogorov entropy are s
sitive to the presence of small amounts of noise, which m
obscure the underlying fractal structure@1–6#. White noise
basically tends to fill all the phase space available, provid
an infinite correlation dimension. On the contrary, color
noise has a finite correlation dimension, which depends
the spectral exponenta @7,8#. Thus, we expect that the influ
ence of colored noise on low-dimensional chaotic syste
will be different from that of white noise. Here we analyz
the following three classical models contaminated by wh
and colored noise:~1! a discrete chaotic He´non map (a
51.4, b50.3) @9#, and two continuous chaotic systems ge
erated ~2! by Rössler equations (a50.15,b50.2, c510)
@10#, with sampling time Dt50.15 s and delay timet
510Dt, and ~3! by Lorenz equations (S516.0,R
545.92,b54.0) @10#, with sampling timeDt50.15 s and
delay time t54Dt. The selected parameter for the thr
models were chosen to represent chaotic dynamics. We
time series ofx components consisting ofN516 384 points.

In this study we add white and colored noise to the
chaotic systems, in order to study the dependence of
correlation dimension and the Kolmogorov entropy on
noise levels and the spectral exponenta. Namely, we like
to extend the results known in the case of white noise c
tamination of chaotic data@3,11# to the case of colored noise

In order to compute the correlation dimension and K
mogorov entropy we make use of the Grassberger and
caccia method@9#. Therefore, we first briefly review this pro
cedure. Using time series of equally spaced data,
construct a large number of vectorsX(t i)5(x(t i),x(t i
1t), . . . ,x„t i1(m21)t…) in the embedding phase space
dimension m, where i 51, . . . ,n with n5N2(m21)t.
Then, we divide this space into a large numberM (r ) of
equal hypercubes of sizer, which cover the presumed attra
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tor. If pj is the probability measure that a point from a tim
series falls in a typicalj th hypercube, using theq-order func-
tion I q(r )5((pj )

q, j 51, . . . ,M , the generalized dimensio
@12–14# is, e.g.,

Dq5
1

q21
lim
r→0

@ ln I q~r !/ ln r #. ~1!

The relatedq-order Rényi-Kolmogorov information entropy
@9,13,14# is given by

Kq5 lim
r→0

lim
m→`

1

12q
ln I q~r !. ~2!

In practice,q52 is sufficient andI 2(r ) is taken to be equa
to the correlation sum@15#

Cm~r !5
1

nref
(
i 51

nref 1

n22nc21 (
j 5nc11

n

u„r 2uX~ t i !2X~ t j !u…,

~3!

with u(x) being the unit step function, wherenref5500 is the
number of reference vectors andnc54 is Theiler’s correc-
tion @16#. For largem and smallr in the scaling region it can
be argued that

Cm~r !}r D2e2m K2, ~4!

whereD2 andK2 are approximations of the idealr→0 and
m→` limits in Eq. ~2! for q52, Refs.@9,15#.

The next point is to generate colored noise with vario
spectral exponentsa. Following the Osborne and Provenza
method@7,8,17#, we consider a stochastic process describ
by the standard Fourier series:

X~ t i !5 (
k51

M /2

zk cos~vkt i1fk!, ~5!
©2002 The American Physical Society02-1
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where fk are the random phases, computed at timest i
5 iDt, with i 51, . . . ,M (T5MDt), and frequencies equa
to vk5kDv, with k51, . . . ,M /2 (Dv52p/T). The coef-
ficients zk are related to the power spectrumP(vk) of the
random function by

zk5@P~vk!Dv#1/2. ~6!

If the power spectrum has a power-law dependence

P~vk!5Cvk
2a , ~7!

with random phasesfk uniformly distributed on the interva
@0,2p) for a given spectral exponent 1,a<3, then the re-
sulting signal is self-affine. It follows that, after averagin
~for a fixed value ofa), we have

^uX~ t i1Dt !2X~ t i !u&5lD^uX~ t i1lDt !2X~ t i !u&. ~8!

FIG. 1. The functionD2,m(r )5d@ ln Cm(r)#/d(ln r) versus lnr
obtained for the Ro¨ssler attractor with noise levels52% is shown
for fixed embedding dimensionm58 and various spectral expo
nentsa.

FIG. 2. The calculated correlation dimensionD2(a) versusa
obtained for the Ro¨ssler attractor is shown for noise level 1%<s
<5%.
03520
The correlation dimension of the random signal,D
5D2

noise, is then related to the spectral exponenta by

D2
noise~a!5

2

a21
. ~9!

Now, we discuss the influence of noise in detail as f
lows. First, we calculate the correlation dimensionD2,m(r )
5d@ ln Cm(r)#/d(ln r) versus lnr for the Rössler, Lorenz, and
Hénon attractors, corrupted by 2% of colored noise w
various spectral exponents:a50,1.6,2, and 3. In Fig. 1 we
show the results of our calculations for the Ro¨ssler attractor.
As discussed in Ref.@11#, usually one can distinguish differ
ent types of behavior ofD2,m(r ) for different regions of
scalesr. Small values ofr are usually dominated by the nois

FIG. 3. The calculated correlation dimensionD2(a) versusa
obtained for the Ro¨ssler, Lorenz, and He´non attractors is shown fo
noise level s52%. The dashed lines show the fitted functio
D2(a)5A01A1s 2/(a21).

FIG. 4. The functionK2,m(r )5(1/Dm)ln@Cm(r)/Cm1Dm(r)# in
units of time lagT5tD t versus lnr (Dm51) for the Rössler at-
tractor with noise levels52% is shown for fixed embedding di
mensionm513 and various spectral exponentsa.
2-2
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in the data and, in the case of white noise, we expect
D2,m(r ) should be proportional to the embedding dimens
m. Further, in the proper scaling region of distancesr, if the
D-dimensional attractor exists, we expect a plateau of
function D2,m(r ) for m>D @18# and in the worst case fo
m.2D @19#; the plateau independent ofm should provide
the proper correlated dimension. In our case, embedding
mension is fixed tom58 ~which is even larger thanm
.2D), in order to demonstrate more clearly the influence
noise on the estimated dimension.

As seen in Fig. 1, for the case without noise (s50) we
obtain a wide and clear plateau for a scaling region of
, ln r,10. The average of the functionD2(r ) in this range
of r yields the proper correlation dimension for the Ro¨ssler
attractor, D252.0160.06, Ref. @10#. In the presence o
white noise (a50) the width of the scaling region i
strongly reduced, i.e., by one order of magnitude. On
contrary, colored noise (1,a<3) does not basically ob
scure the scaling region for the dimension, changing only
shape of the correlation sum for length scales smaller t
the noise level. A reasonably wide plateau for the correlat
sum is still obtained, but the calculated dimension is som
what increased. We also observe that the value of the pla
depend on the spectral exponent of colored noisea. In order
to quantify the increase of the correlation dimension, we
the scaling region 0.1, ln r,10 ~as in the case of uncontam
nated data!, and then calculate the correlation dimension v
sus a, for noise level 1%<s<5% and spectral exponen
1,a<3.

The results of these calculations for the Ro¨ssler attractor
are shown in Fig. 2. For increasing noise levels, the calcu-
lated correlation dimensionD2(a) shows very similar be-
havior to the correlation dimension of the pure colored no
D2

noise(a)52/(a21). Therefore, it makes sense to fit the
points with a function that depends on the dimension
noiseD2

noiseand the noise levels. We try the simple bilinear
function D2(a)5A01A1s 2/(a21) with two parameters
A0 andA1.

The fitted functionsD2(a)5A01A1s 2/(a21) obtained
for the Rössler, Lorenz, and He´non attractors are shown i
Fig. 3, for noise levels52%. Table I summarizes calculate
values of parametersA0 and A1, for noise level 1%<s
<5% and spectral exponent 1,a<3. The parameterA0
should give the proper correlation dimension for the syst
not corrupted by noise. Admittedly, the values of these
rameters are somewhat larger. Nevertheless, this bilin
function of the dimension of noiseD2

noiseand the noise leve
s fits quite well the values of the correlation dimensionD2

TABLE I. The parametersA0 andA1 of the fitted functionD2

5A01sA12/(a21), for noise level 0.01<s<0.05 and spectra
exponent 1,a<3.

System A0 A1

Rössler 2.0860.06 1.960.1
Lorenz 2.2460.15 3.160.2
Hénon 1.560.25 2.960.4
03520
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obtained for noise level as high ass;5%. For larger
amounts of noise, some deviations from the fitted funct
are observed. We suppose that, in this case, it is no m
adequate to consider colored noise as a linear addition to
deterministic chaotic system. We should rather try to d
scribe the system as a mixture of two components~a random
fractal and a chaotic deterministic part!.

For a larger number of points,N532 768, we obtain es-
sentially the same results. Again, the calculated correla
dimensionD2(a) is well approximated by the same bilinea
function. In addition, the values of the parameterA0 agree
even better with the proper correlation dimensions for
systems not corrupted by noise. Namely, we obtain for
Rössler, Lorenz, and He´non attractors,A051.9760.06,
1.9660.07, and 1.4460.14, correspondingly. The values o
the parameterA1 change within the errors given in Table I

These numerical results also confirm that, when we d
with real data, the sole estimation of a finite correlation
mension, from the analysis of an unknowna priori system, is
not sufficient to infer the presence of deterministic chaos
the system. On the other hand, the estimated correlation
tropy does not depend on the spectral exponent of the
ored noise a. In Fig. 4 the function K2,m(r )
5(1/Dm)ln@Cm(r)/Cm1Dm(r)# versus lnr (Dm51) for the
Rössler attractor with noise levels52% is shown for vari-
ous spectral exponentsa. We see that for largera a wider
scaling region is obtained, but the value of the plateau d
not basically change, providing a finite and positive corre
tion entropy. Since we know that the correlation entropy
colored noise converges to zero@17#, we suggest that the
estimation of the correlation entropy is a more suita
method able to distinguish between chaos and colored
dom noise. For the correlation entropy, the dependence o
width of the scaling region on the spectral exponent of
noise a will be extensively discussed in the forthcomin
paper.

To conclude, white noise strongly reduces the width of
scaling region for the correlation dimension and entropy.
the contrary, colored noise does not basically obscure
scaling region for the dimension, changing only the shape
the correlation sum for length scales smaller than the no
level. For some amounts of colored noise~even for a noise
level as high ass;5%), areasonably wide plateau for th
correlation sum is still obtained, but the calculated dimens
is somewhat increased. The obtained correlation dimen
is approximately a bilinear function of the noise levels, and
the dimension of the noise, which depends on the spec
exponent of the noisea; for larger a a wider plateau is
obtained. On the other hand, the width of the scaling reg
for the correlation entropy depends on this spectral expon
but the value of the plateau does not change very mu
Based on our examples, we conjecture that colored n
contamination does not significantly complicate the estim
tion of the dimension and the entropy of chaotic systems

This work has been done in the framework of the Eu
pean Commission Research Training Network Grant N
HPRN-CT-2001-00314.
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