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Influence of colored noise on chaotic systems
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We focus on classical chaotic systems corrupted by white and colored noise. We study the dependence of the
correlation dimension and the Kolmogorov entropy on the noise level and its spectral exponent. As is well
known, white noise strongly reduces the width of the scaling region for the correlation dimension and entropy.
On the contrary, we demonstrate that colored noise does not basically obscure the scaling region, changing
only the shape of the correlation sum for length scales smaller than the noise level. The numerical results show
that, even for a noise level as higha$%, a reasonably wide plateau for the correlation sum is still obtained,
but the value of the calculated dimension is somewhat increased. The calculated correlation dimension is a
bilinear function of the noise level and the dimension of the noise, which depends on the spectral exponent of
the noise. On the other hand, the width of the scaling region for the correlation entropy depends on this spectral
exponent, but the value of the plateau does not change substantially.
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In order to detect and quantify chaos in a dynamical systor. If p; is the probability measure that a point from a time
tem, it is necessary to deal with a cleaned signal. Both theeries falls in a typicajth hypercube, using thg-order func-
correlation dimension and the Kolmogorov entropy are sention | (r)=2(p;)9,j=1, ... M, the generalized dimension
sitive to the presence of small amounts of noise, which may12-14 is, e.g.,
obscure the underlying fractal structyre-6]. White noise
basically tends to fill all the phase space available, providing )
an infinite correlation dimension. On the contrary, colored Dq:q__ll'm [InT4(r)/inr]. @)
noise has a finite correlation dimension, which depends on =0
the spectral exponent [7,8]. Thus, we expect that the influ-
ence of colored noise on low-dimensional chaotic system
will be different from that of white noise. Here we analyze
the following three classical models conta[ninated by white 1
and colored noise(1) a discrete chaotic H®n map & Kq=lim lim ——Inl4(r). 2)
=1.4,b=0.3) [9], and two continuous chaotic systems gen- N I
erated (2) by Rossler equationsa=0.15,b=0.2,c=10)

[10], with sampling time At=0.15s and delay timer In practice,q=2 is sufficient and ,(r) is taken to be equal
=10At, and (3) by Lorenz equations {=16.0,R to the correlation surhl5]
=45.92,b=4.0) [10], with sampling timeAt=0.15 s and

delay time r=4At. The selected parameter for the three 1 ref 1
models were chosen to represent chaotic dynamics. We takém(")
time series ok components consisting &= 16 384 points.

In this study we add white and colored noise to these
chaotlc'systgms, n order to study the dependence of th\5?/ith 0(x) being the unit step function, wherg,= 500 is the
correlatlon dimension and the Kolmogorov entropy on thenumber of reference vectors and=4 is Theiler’s correc-
noise levelo and the spectral_ exponent Namel_y, We.I|ke tion [16]. For largem and smallr in the scaling region it can
to extend the results known in the case of white noise CONpe argued that
tamination of chaotic dati&,11] to the case of colored noise.

In order to compute the correlation dimension and Kol- C,.(r)ocrP2g=mKe @)
mogorov entropy we make use of the Grassberger and Pro- m '
caccia methodl9]. Therefore, we first briefly review this pro-
cedure. Using time series of equally spaced data, w
construct a large number of vector&(t;)=(x(t;),x(t;
+7), ... X+ (m—1)7)) in the embedding phase space of
dimension m, where i=1,...n with n=N—(m—1)7.
Then, we divide this space into a large numié(r) of
equal hypercubes of sizewhich cover the presumed attrac-

he relatedg-order Rayi-Kolmogorov information entropy
9,13,14 is given by

n

> = |X(t) = X)),

- Nret i1 n—2n.—1j-rn+1
(3

whereD, andK, are approximations of the ideal-0 and
Fr— oo limits in Eq. (2) for q=2, Refs.[9,15].

The next point is to generate colored noise with various
spectral exponents. Following the Osborne and Provenzale
method[7,8,17, we consider a stochastic process described
by the standard Fourier series:

M/2

X(t) = i cod oty + dy), (5)
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FIG. 1. The functionD,(r)=d[In C.(r)J/d(Inr) versus Irr
obtained for the Rssler attractor with noise levet=2% is shown

1 15

FIG. 3. The calculated correlation dimensib(«a) versusa

obtained for the Rssler, Lorenz, and Hen attractors is shown for
noise leveloc=2%. The dashed lines show the fitted function

for fixed embedding dimensiom=8 and various spectral expo- D,(@) =Ag+ Ao 2/(a—1).

nentsa.

where ¢, are the random phases, computed at tinies The lation dimension of th
=iAt, withi=1,... M (T=MAt), and frequencies equal _ corelation - dimension c
to wy=kAw, with k=1,... M/2 (Aw=2x/T). The coef-

ficients {, are related to the power spectruf{w,) of the

random function by

L=[PloAo]2

If the power spectrum has a power-law dependence

P(o)=Coy “,

with random phaseg, uniformly distributed on the interval
[0,27) for a given spectral exponentla <3, then the re-
sulting signal is self-affine. It follows that, after averaging

(for a fixed value ofa), we have

(6)

random signdD,

D%, is then related to the spectral exponanby

) 2
ngset a) = m . (9)

Now, we discuss the influence of noise in detail as fol-
lows. First, we calculate the correlation dimensidg (r)

—d[InCy(n)Vd(InT)

versus I for the Rassler, Lorenz, and

(7 Henon attractors, corrupted by 2% of colored noise with

various spectral exponenta=0,1.6,2, and 3. In Fig. 1 we
show the results of our calculations for thesRker attractor.
As discussed in Refl11], usually one can distinguish differ-
ent types of behavior oD, (r) for different regions of

scaleg. Small values of are usually dominated by the noise
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FIG. 2. The calculated correlation dimensiBni(«) versusa
obtained for the Rssler attractor is shown for noise level ¥o

<5%.

FIG. 4. The functionK, (r)=(LAm)IN[C(r)/Criam(r)] in

units of time lagT=7A; versus Ir (Am=1) for the Rssler at-
tractor with noise levebr=2% is shown for fixed embedding di-

mensionm= 13 and various spectral exponemnts
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TABLE I. The parameterd\, and A, of the fitted functionD, obtained for noise level as high as~5%. For larger
=A¢t oA2/(a—1), for noise level 0.0&0=0.05 and spectral amounts of noise, some deviations from the fitted function
exponent k a<3. are observed. We suppose that, in this case, it is no more
adequate to consider colored noise as a linear addition to the

System Ao Ax deterministic chaotic system. We should rather try to de-
Rossler 2.08-0.06 1.9-0.1 scribe the system as a mixture of two componéatsaandom
Lorenz 2.24-0.15 3.2-0.2 fractal and a chaotic deterministic part

Henon 1.5-0.25 2.9-0.4 For a larger number of point®y=32 768, we obtain es-

sentially the same results. Again, the calculated correlation
dimensionD,(«) is well approximated by the same bilinear

in the data and, in the case of white noise, we expect thdtinction. In addition, the values of the parametey agree
D, (r) should be proportional to the embedding dimensionéven better with the proper correlation dimensions for the
m. Further, in the proper scaling region of distancei the ~ Systems not corrupted by noise. Namely, we obtain for the
D-dimensional attractor exists, we expect a plateau of th&ossler, Lorenz, and H®n attractors,Ay=1.97+0.06,
function D, (r) for m=D [18] and in the worst case for 1.96-0.07, and 1.440.14, correspondingly. The values of
m>2D [19]; the plateau independent ai should provide the parameteA; change within the errors given in Table I.
the proper correlated dimension. In our case, embedding di- These numerical results also confirm that, when we deal
mension is fixed tom=8 (which is even larger tham with real data, the sole estimation of a finite correlation di-
>2D), in order to demonstrate more clearly the influence ofmension, from the analysis of an unknowipriori system, is
noise on the estimated dimension. not sufficient to infer the presence of deterministic chaos in
As seen in Fig. 1, for the case without noise<0) we  the system. On the other hand, the estimated correlation en-
obtain a wide and clear plateau for a scaling region of 0.%ropy does not depend on the spectral exponent of the col-
<In r;lO. The average of thg func.:tidhz(.r) in this range  ored noise a. In Fig. 4 the function Ko m(T)
of r yields the proper correlation dimension for thesRier = (LAM)IN[Cr(r)/Crrs ()] Versus I (Am=1) for the
attractor, D,=2.01+0.06, Ref.[10]. In the presence of Riggier attractor with noise levei=29% is shown for vari-
white noise @=0) the width of the scaling region is s spectral exponents. We see that for larger a wider
strongly reduced, €., by one order of mag”'“.lde- On thE‘scaling region is obtained, but the value of the plateau does
contrary, colored noise (1a<3) does not basically ob- not basically change, providing a finite and positive correla-

scure the scaling region for the dimension, changing only th%on entropy. Since we know that the correlation entropy of

shape of the correlation sum for length scales smaller thagOlored noise converges to zefb7], we suggest that the
the noise level. A reasonably wide plateau for the correlation imai f th 9 lati i ' Sugg itabl
sum is still obtained, but the calculated dimension is someSStimation of the correlation entropy 1S a more suitable

what increased. We also observe that the value of the plated[jlethod able to distinguish between chaos and colored ran-
depend on the spectral exponent of colored naisén order dom noise. For the correlation entropy, the dependence of the

to quantify the increase of the correlation dimension, we fixVidth of the scaling region on the spectral exponent of the

the scaling region 0&Inr<10 (as in the case of uncontami- noise a will be extensively discussed in the forthcoming
nated datg and then calculate the correlation dimension ver-PaPer. _ _ _
susa, for noise level 1% o<5% and spectral exponent To conclude, white noise strongly reduces the width of the
1<a<3. scaling region for the correlation dimension and entropy. On
The results of these calculations for thésBler attractor the contrary, colored noise does not basically obscure the
are shown in Fig. 2. For increasing noise lewelthe calcu- ~ SCaling region for the dimension, changing only the shape of
lated correlation dimensio®,(a) shows very similar be- the correlation sum for length scales smaller than the noise
havior to the correlation dimension of the pure colored nois%evel' For.some amounts of colored no(m/en for a noise
DY @) =2/(a—1). Therefore, it makes sense to fit these evel as high agr~5%), areasonably wide plateau for the
pozints with a function that dépends on the dimension Ofcorrelatlon sum is still obtained, but the calculated dimension
noiseD™¢ and the noise levat. We trv the simple bilinear is somewhat increased. The obtained correlation dimension
functior? D(a)=Ag+ A 02/(a; 1) w?{[h Wo grameters is approximately a bilinear function of the noise leveland
A andA 2 0r P ' the dimension of the noise, which depends on the spectral
0 1 . : exponent of the noiser; for larger « a wider plateau is
for-ljtni f&iggnfgﬁ%ﬁ) d_ﬁg): '2%{: azc/t(oars_ ;r)eosrﬁ?)lvr\]/ﬁdin obtained. On the other hand, the width of the scaling region
Fia. 3. for noisé Ieve&r—,Z(V Table | summarizes calculated for the correlation entropy depends on this spectral exponent,
9.3, — <7 but the value of the plateau does not change very much.

i 0,
\;aISLi/es of dpararr:etlers\o and f‘l’ f<o; n9rlrs1€ level 1t/§AU Based on our examples, we conjecture that colored noise
<5% and spectral exponent<la<3. The parameteRo amination does not significantly complicate the estima-

should give the proper correlation dimension for the SysteMm:ion of the dimension and the entropy of chaotic systems.
not corrupted by noise. Admittedly, the values of these pa-

rameters are somewhat larger. Nevertheless, this bilinear This work has been done in the framework of the Euro-
function of the dimension of nois@5”*®and the noise level pean Commission Research Training Network Grant No.
o fits quite well the values of the correlation dimensiba ~ HPRN-CT-2001-00314.
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