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We consider convection in a horizontally magnetized viscous fluid layer in the gravitational field heated
from below with a vertical temperature gradient. Following Rayleigh-Bénard scenario and using a general
magnetohydrodynamic approach, we obtain a simple set of four ordinary differential equations. In addition to
the usual three-dimensional Lorenz model a new variable describes the profile of the induced magnetic field.
We show that nonperiodic oscillations are influenced by anisotropic magnetic forces resulting not only in an
additional viscosity but also substantially modifying nonlinear forcing of the system. On the other hand, this
can stabilize convective motion of the flow. However, for certain values of the model parameters we have
identified a deterministic intermittent behavior of the system resulting from bifurcation. In this way, we have
identified here a basic mechanism of intermittent release of energy bursts, which is frequently observed in
space and laboratory plasmas. Hence, we propose this model as a useful tool for the analysis of intermittent
behavior of various environments, including convection in planets and stars. Therefore, we hope that our
simple but still a more general nonlinear model could shed light on the nature of hydromagnetic convection.
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The problem of convection in magnetized fluids is impor-
tant not only for laboratory and space plasma physics, but
also for geophysics and astrophysics. Examples of possible
applications include magnetoconfined plasmas in tokamaks,
nanodevices and microchannels in nanotechnology, liquid in-
teriors of the earth core, interiors of the sun and stars, solar
sunspots and coronal holes, granulation, the flow in the mag-
netosphere and heliosphere, and even in interstellar and in-
tergalactic media. However, notwithstanding of progress in
numerical simulations of convection, the nature of nonlinear
dynamics of a viscous fluid with the embedded magnetic
fields is still not sufficiently understood. In fact in magneto-
hydrodynamics a behavior of a conducting fluid is rather
complex, and instead of a general theory we must still rely
on some simplified models.

To gain insight into inherent unpredictability of the
weather, Lorenz obtained a set of three nonlinear ordinary
differential equations describing a cellular convection of a
viscous hydrodynamic fluid �1�. Similar low-dimensional
models of plasma convection have been recently derived for
toroidal magnetic field configuration �2�. The possibility of
deterministic aperiodic behavior has been also suggested in
space plasmas �3,4� and in a magnetized plasma in labora-
tory �5,6�. After all, a deterministic approach has also been
successful for explaining scaling of turbulence by phenom-
enological models �e.g., �7–9��. Low-dimensional models of
fluid dynamics are strongly simplified and one should bear in
mind that purely low-dimensional behavior is rather rarely
observed in real physical systems. However, despite their

simplicity, these models used as approximations may provide
an insight into dynamical mechanisms appearing in aperiodic
convective flows, describing self-consistently anomalous
transport processes in fluids.

In this Brief Report we derive a generalization of the Lo-
renz model by including the magnetic field. We also present
important results of numerical studies of basic properties of
the derived model, which can be of relevance for magnetized
fluid experiments. We focus here on the results concerning
influence of the magnetic field on convective motion, includ-
ing new types of strange attractors, and intermittency phe-
nomenon observed in the system.

In general, time and space changes, d
dt � �

�t +v ·�, of the
velocity v of the flow, the magnetic field B, or equivalently
Alfvén velocity vA=B / ��o��1/2 with a constant magnetic
permeability �o, and the temperature T �with mass density �
and pressure p� are described by the following partial differ-
ential equations �10�:

dv

dt
= −

1

�
� �p +

B2

2�o
� +

�B · ��B
�o�

+ ��v + f , �1�

dB

dt
= �B · ��v + ��B , �2�

dT

dt
= ��T , �3�

where �f is the volume density of additional external forces,
while �, �, and � denote kinematic viscosity, magnetic dif-
fusive viscosity, and thermal conductivity of the fluid, corre-
spondingly.

In this Brief Report we look at the Rayleigh-Bénard prob-
lem �11� of a horizontal �x-axis� viscous fluid layer of height
h heated from below with an applied vertical �z-axis� tem-
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perature gradient �T under the vertical gravitational field
with a constant acceleration g resulting in the buoyancy term
f. The schematics of this standard scenario can be found,
e.g., in Appendixes to Refs. �7,12�. As usual, using a constant
coefficient 	, we take into account the volume expansion for
f term, �=�o�1−	�T�, but except that the fluid is treated as
incompressible, �=�o �the Oberbeck-Boussinesq approxima-
tion� �13,14�.

But now in this Brief Report we take into consideration
the effect of the magnetic field. Naturally, in a case of an
incompressible fluid we can use a stream �potential� function

 defined by v=��
, and similarly a vector potential A
for the magnetic field B=��A, satisfying naturally the con-
ditions � ·v=0 and � ·B=0 in Eq. �2�. Surely, taking the
rotation of Eqs. �1�–�3� both the thermal and isotropic parts
of the magnetic pressure are eliminated, but an anisotropic
tension of the magnetic field should still be important.

One can expect that in a case of a thin horizontal layer,
the influence of an external horizontal magnetic field should
be important. If we apply an initial magnetic field Bo along
the x direction by adding the Alfvén velocity vAo
=Bo / ��o�o�1/2, while neglecting a possible vertical field, we
can write the perturbed respective potentials in the forms
�= �0,��x ,z , t� ,0	 and A / ��o�o�1/2= �0,�x ,z , t�−vAoz ,0	.
Now, following Rayleigh we can look for solutions of the
induced potentials for both the bulk and the Alfvén velocities
in the double asymmetric �parameter a� Fourier representa-
tion �11,15�,

��x,z,t� = 
2
1 + a2

a
�X�t�sin��a

h
x�sin��

h
z� , �4�

�x,z,t� = 
2
1 + a2

a
�W�t�cos��a

h
x�sin��

h
z� . �5�

In the well-known three-dimensional Lorenz model, besides
a time-dependent variable X proportional to the intensity of
the convective motion, the other two variables Y and Z de-
scribe the temperature profile in Eq. �3� �see Ref. �1��. In
addition, in this Brief Report we have introduced a time-
dependent variable W describing the profile of the magnetic
field induced in the convected magnetized fluid according to
Eqs. �1� and �2�.

Altogether in this way we obtain from the general mag-
netohydrodynamic equations �1�–�3� a simple set of four or-
dinary differential equations,

Ẋ = − �X + �Y − �oW , �6�

Ẏ = − XZ + rX − Y , �7�

Ż = XY − bZ , �8�

Ẇ = �4�/�o��oX − �mW , �9�

where an overdot denotes an ordinary derivative with respect
to the normalized time t�= �1+a2���� /h�2t, and
b=4 / �1+a2�. As usual r=Ra /Rc is a control parameter of the
system proportional to the temperature gradient �T or a Ray-

leigh number Ra=g	h3�T / ���� normalized by a critical
number Rc= �1+a2�3��2 /a�2. In addition, we now introduce
another control parameter proportional to the initial magnetic
field strength Bo applied to the system, which is defined here
as a basic dimensionless magnetic frequency, related to
Alfvén waves by �o=vAo /vo, with vo=16�2� / �abh�o�.
Naturally, besides the Prandtl number �=� /�, the properties
of the magnetized fluid are characterized by the magnetic
Prandtl number �m=� /� resulting from the last term in Eq.
�2�.

More specifically, the last term in Eq. �6� comes from the
anisotropic tension of the magnetic field �B ·��B / ��o�� in
Eq. �1�. Similarly, the first term of Eq. �9� results from
�B ·��v on the right-hand side of Eq. �2�, taking into account
changes in the velocity v in space at a given time along the
magnetic field B. We can argue that this term, describing
how the velocities of the fluid are changed owing to the
convected magnetic fields, is in our case more important than
�v ·��B, which is responsible for advection of the magnetic
field B in a fluid moving with velocity v. In fact, for a con-
stant magnetic field Bo the later term vanishes. Therefore, as
an approximation of the convective movement of the mag-
netic field frozen in a fluid only a first-order term �Bo ·��v is
maintained �16�. Admittedly, we have also verified that in
this case for the inclusion of any higher-order terms one
would need to consider a wider spectrum of modes, certainly
not limited to Eq. �5�. It is interesting to note that Eqs.
�6�–�9� are somewhat similar to those obtained for acoustic-
gravity waves in the atmosphere �17�, but different signs in
the novel terms result in new phenomena.

Now, combining the set of the generalized Lorenz system
we can write Eqs. �6� and �9� in the following way:

Ẍ + �Ẋ + ��r − �4�/�o��o
2�X = − ��Y + XZ� + �m�oW ,

�10�

Ẅ + �mẆ + �4�/�o��o
2W = �4�/�o���o�Y − X� . �11�

Hence, formally both variables X and W satisfy the equations
of two familiar damped linear oscillators. However, the
terms on the right-hand side of Eqs. �10� and �11� may be
interpreted as nonlinear driving forces. Moreover, we see
that the coupling between X ,W and Y ,Z is enhanced owing
to the magnetic field B. Obviously, when �o=0 this coupling
ceases and the variable W is damped by the magnetic viscos-
ity �see Eqs. �6� and �9��.

For the generalized Lorenz system �Eqs. �6�–�9�� besides
a zero fixed point C0, we have two other fixed points
C�= ��d /
1+e , �d
�1+e� ,r− �1+e� , � �� /�o�de /
1+e	,
with d=
b��r−1�−e� and e= �4� /�o��o

2 / ���m�. The zero
fixed point C0 is stable for 0�r�ro, but the additional fixed
points C� are stable for ro�r�rH, where ro=1+e is the
critical normalized Rayleigh number for the onset of convec-
tion and r=rH is a critical value where a Hopf bifurcation
takes place. We see that here the critical number ro for the
onset of convection increases with the magnetic field; thus,
the magnetic field can stabilize the convection as regards to
the appearance of convective rolls. However, if we consider
oscillations of the convection rolls as described by the model
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of Eqs. �6�–�9�, the influence of the magnetic field is more
intricate.

This is illustrated in Fig. 1 using the plane spanned by two
dimensionless control parameters r and �o �note that in
Gauss units 4� /�o=1�, where we can distinguish the follow-
ing three regions of different dynamical behaviors of convec-
tive rolls: one without possibility of long-term oscillations,
another with periodic oscillations, and third with chaotic dy-
namics. From the point of view of the theory of dynamical
systems these three possibilities correspond to the situations
where the trajectories of the dynamical system described by
Eqs. �6�–�9� are attracted by fixed points �equilibrium�, limit
cycles, and chaotic attractors, correspondingly. For example,
given �o=2 and increasing r we observe a direct transition
from a fixed point to a chaotic attractor similar to that ob-
served for the classical Lorenz system. However, for higher
values, e.g., for �o=5, the model predicts periodic oscilla-
tions for some intermediate values of r between the state
without oscillations �for small r� and chaotic dynamics �for
large r�. On the other hand for fixed r=30 when increasing
�o we observe the transition from chaotic to periodic oscil-
lations and then from periodic oscillations to nonoscillating
rolls, which exhibits stabilizing influence of the magnetic
field on the dynamics. Surprisingly, for r=20 by increasing
magnetic field ��o� one may induce chaotic oscillations for
some range of �o, which are then damped for still increasing
magnetic field. One should notice that the control parameter
�o depends on both the strength of the magnetic field and the
average density; thus, the transitions described above may be

obtained by changes in one of these quantities.
Some of many interesting new types of hydromagnetic

strange attractors of the system projected onto the three-
dimensional subspace spanned by X, Y, and W axes are now
illustrated in Fig. 2. We take the standard values of the Lo-
renz model parameters: r=28, �=10, and b=8 /3. With a
magnetic field, �o=1, and a small magnetic viscosity, �m
�0, a familiar butterfly-shaped set strongly wanders along
the W axis �case �a��. Naturally, the system is dissipative and
the volume in phase space shrinks rapidly due to kinematic

and magnetic viscosities, V̇=−��+�m+b+1�V; the attractor
is strange and has a measure of zero. Because of that the
trajectories only appear to merge, but they actually remain
distinct.

In particular, it is worth noting a structure for �o=6 in the
presence of some magnetic viscosity, �m=2, presented in
Fig. 2�b�. When changing the magnetic control parameter in
some narrow range near �o=6 trajectories in the phase space
describing the perturbed magnetic vector potential merge and
separate again resulting in irregularly reappearing “islands.”
This merging is related to a special �hyper�surface, which
separates small oscillations around one of the two fixed
points, C�, from large oscillations that encircle all fixed
points, including a zero unstable fixed point, C0. Therefore,
in the vicinity of this value a periodic motion is interrupted
with chaotic bursts as shown in Fig. 3. Finally, if the mag-
netic field strength is further increased, so that the last term
in the left-hand side of Eq. �10� changes sign, �o

2��r, the
oscillations are depressed and the system will tend to a fixed
point as shown in Fig. 1.

It is worth noting that in the proximity of the boundary
between chaotic and periodic regions in Fig. 1 we have iden-
tified intermittent behavior of the system illustrated in Fig. 3,
where almost periodic oscillations are interrupted by bursts
of irregular behavior. This phenomenon of intermittency can
be observed as bursts of increased energy dissipation, de-
fined here as ��v�2+��B�2 / ��o��. By the analysis of a
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FIG. 1. Long-term behavior of the dynamical system of Eqs.
�6�–�9� in the space of dimensionless control parameters �o and r
for fixed values of other parameters of the system: �=10, b=8 /3,
�m=1. Solid lines separate regions of different dynamical
behaviors.
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FIG. 2. The three-dimensional projection of the attractor for �a� �o=1, �m�0 and �b� �o=6, �m=2, correspondingly.
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FIG. 3. The intermittent behavior of the generalized Lorenz
model as a function of normalized time identified here for the vari-
able W with the control parameters �o=4.8 and �m=1.
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Poincaré map �constructed from the values of Y variable
taken for X=0 plane crossings� we have identified this inter-
mittency as type III �see Ref. �18��. The intermittency of this
type displays characteristic behavior of the signal, distribu-
tion of lengths of laminar intervals, and dependence of the
mean length of laminar interval on bifurcation parameter as
described thoroughly, e.g., in Ref. �12�. Here, in Fig. 4 we
show the probability distribution of the laminar time inter-
vals � for our model of Eqs. �6�–�9�, where a nontrivial non-
linear dependence is well approximated by the theoretical
formula for type III intermittency �12�,

P��� 
�3/2e4��

�e4�� − 1�3/2 , �12�

where � is the difference between the actual value of the
control parameter and its critical value for the onset of inter-
mittency. One should note that this functional dependence is
different from purely exponential behavior, predicted by self-
organized criticality models, as well as from power-law de-
pendence observed for fully developed turbulence �19�.

In conclusion, we propose a new low-dimensional model
describing self-consistently convective transport of magne-
tized fluids. It is clearly shown that the influence of the mag-
netic field is more intricate than purely stabilizing effect pre-
dicted by simple analytical models �16�. Intermittent
behavior of the model is identified as important from the
experimental point of view. One should note that, as is es-
sential for intermittency, this transition from regular to ir-
regular behavior results from the appearance and disappear-
ance of fixed points or limit cycles and not from any
stochastic forces. In our experience, we have identified here

a fundamental mechanism of intermittent release of energy
bursts, which is often observed in space and laboratory plas-
mas. Hence, we hope that our simple but still a more general
nonlinear model could shed light on the nature of hydromag-
netic turbulent convection, helping one to identify chaotic
and intermittent behavior in various environments �3,9,19�.
We propose this model as a useful tool for the analysis of
intermittent convection in nonlinear complex systems, such
as planetary and stellar interiors, including massive stars
with heavy elements, which are important for the evolution
of the universe, also in view of many space missions.
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FIG. 4. Distribution of the lengths of laminar phases for
�o=5.3, r=28, �=10, b=8 /3, and �m=1. Numerically obtained
distribution �plus signs� is compared with theoretically predicted
dependence on normalized time intervals �solid line� as given by
Eq. �12�.
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