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We analyze time series of velocities of the solar wind plasma including the outward-directed component of
Alfvénic turbulence within slow wind observed by the Helios 2 spacecraft in the inner heliosphere. We
demonstrate that the influence of noise in the data can be efficiently reduced by a singular-value decomposition
filter. The resulting generalized dimensions show a multifractal structure of the solar wind attractor in the inner
heliosphere. The obtained multifractal spectrum is consistent with that for the multifractal measure on the
self-similar weighted baker’s map with two parameters describing uniform compression and natural invariant
measure on the attractor of the system.
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The generalized dimensions of attractors are important
characteristics of complex dynamical systems �1�. Since
these dimensions are related to frequencies with which typi-
cal orbits in phase space visit different regions of the attrac-
tors, they provide information about dynamics of the systems
�2�. If the measure has different fractal dimensions on differ-
ent parts of the support, the measure is multifractal �3�.

The question of multifractality is of great importance also
for the solar wind community, because it allows us to inves-
tigate the nature of interplanetary hydromagnetic turbulence,
e.g., �4–6�. Therefore, following these applications, we con-
sider the inner heliosphere. The solar wind plasma flowing
supersonically outward from the Sun is quite well modeled
within the framework of the hydromagnetic theory. This con-
tinuous flow has two forms: slow ��400 km s−1� and fast
��700 km s−1� �7�. We limit our study to the low-speed
stream. Indication for a chaotic attractor in the slow solar
wind has been given in �8–10�. In particular, Macek �8� has
calculated the correlation dimension of the reconstructed at-
tractor. Further, Macek and Redaelli �9� have shown that the
Kolmogorov entropy of the attractor is positive and finite, as
it holds for a chaotic system. The entropy is plausibly con-
strained by a positive local Lyapunov exponent that would
exhibit sensitive dependence on initial conditions of the sys-
tem.

We have extended our previous results on the dimensional
time series analysis �8�. Namely, we have applied the tech-
nique that allows a realistic calculation of the generalized
dimensions of the solar wind flow directly from the cleaned
experimental signal by using the Grassberger and Procaccia
method �11�. The resulting spectrum of dimensions shows
the multifractal structure of the solar wind in the inner helio-
sphere �10�. In this paper we demonstrate the influence of

noise on these results and show that noise can efficiently be
reduced by a singular-value decomposition filter. The ob-
tained multifractal spectrum of the solar wind attractor re-
constructed in the phase space is consistent with that for the
multifractal measure on the self-similar weighted baker’s
map.

We analyze the Helios 2 data using plasma parameters
measured in situ in the inner heliosphere �7�. The X-velocity
�mainly radial� component of the plasma flow, v, has been
investigated in �8,9�. However, it is known that various dis-
turbances are superimposed on the overall structure of the
solar wind, including mainly Alfvén waves. Therefore, in
this paper we take also into account Alfvénic fluctuations of
the flow. Namely, in this paper we analyze the radial �X− �
component of one of the Elsässer variables, x=z+, represent-
ing Alfvénic fluctuations propagating outward from the Sun.
We have z+=v+vA for the unperturbed magnetic field Bo
pointing to the Sun and z+=v−vA for Bo pointing away from
the Sun, where vA=B / ��o��1/2 is the Alfvénic velocity cal-
culated from the experimental data: the radial component of
the magnetic field of the plasma B and the mass density �
��o is the permeability of free space�. Assuming absence of
radial evolution, we have merged two selected time intervals
separated by about 0.5 AU as observed by the Helios 2
spacecraft in 1977 �i� from 116:00 to 121:21 �day:hour� at
distances 0.30–0.34 AU and �ii� from 348:00 to 357:00 at
0.82–0.88 AU from the Sun. These raw data of v and
vA , N=26,163 points, with sampling time of �t=40.5 s, are
shown in Fig. 1�a�. Small gaps ��3 �t� have been interpo-
lated linearly, but larger gaps have been removed from the
data sets.

As in �10�, slow trends �i� 344.596−20.291 t−0.358 t2

and 88.608−452.349 t+343.471 t2 and �ii� 397.847
−291.602 t−241.999 t2 and −30.050+87.756 t−77.773 t2

�with t being a fraction of a given sample� were subtracted
from the original data v�ti� and vA�ti�, correspondingly,
where these values are given in km s−1, and i=1,… ,N. The
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data with the initial several-percent noise level were �eight-
fold� smoothed �replacing each data point with the average
of itself and its two nearest neighbors�. Next, the data have
been filtered using a method of singular-value decomposition
analysis described by Albano et al. �12�. As argued in Ref.
�8� we use five principal eigenvalues. The detrended and
filtered data for the radial component of the Elsässer variable
x=z+ are shown in Fig. 1�b�.

Table I summarizes selected calculated characteristics of
the detrended data cleaned by using the singular-value de-
composition filter; see also Ref. �10�. The probability distri-
butions are clearly non-Gaussian. We have a large skewness
of �0.59 �as compared with its normal standard deviation
0.02� and a large kurtosis of 0.37 �the latter was small for the

analysis with no magnetic field�; see Ref. �8�. We have also
estimated the Lempel-Ziv measure of complexity, relative to
white noise �13�. The calculated value �0.09 is even smaller
than in �8� ��0.20�; maximal complexity, or randomness,
would have a value of 1.0, while a value of zero denotes
perfect deterministic nonlinear predictability.

We choose a time delay �=174 �t, equal to the auto-
correlation time ta where the autocorrelation function
decreases to 1/e , ��x�t�x�t+ ta��− �x�t��2� /�2=1/e, with
average velocity �x�=0.622 km s−1 and standard deviation
�=33.514 km s−1; see Table I. This makes certain that x�t�
and x�t+�� are at least linearly time independent, e.g., Ref.
�2�. Using our time series of equally spaced, detrended, and
cleaned data, we construct a large number of vectors
X�ti�= 	x�ti� ,x�ti+�� ,… ,x[ti+ �m−1��]
 in the embedding
phase space of dimension m, where i=1,… ,n with
n=N− �m−1��. Then, we divide this space into a large num-
ber M�r� of equal hypercubes of size r which cover the pre-
sumed attractor. If pj is the probability measure that a point
from a time series falls in a typical jth hypercube, using the
q-order function Iq�r�=��pj�q , j=1,… ,M, the q-order gen-
eralized dimension is given by �2�

Dq =
1

q − 1
lim
r→0

ln Iq�r�
ln r

. �1�

We see from Eq. �1� that the larger q is, the more strongly are
the higher-probability cubes �visited more frequently by a
trajectory� weighted in the sum for Iq�r�. Only if q=0, all the
cubes are counted equally, I0=M, and we recover the box-
counting dimension, D0.

Writing Iq�r�=�pj�pj�q−1 as a weighted average ��pj�q−1�,
one can associate bulk with the generalized average probabil-
ity per hypercube �=

q−1���pj�q−1�, and identify Dq as a scal-
ing of bulk with size, ��rDq. Since the data cannot constrain
well the capacity dimension D0, we look for higher-order
dimensions, which quantify the multifractality of the prob-
ability measure on the attractor. For example, the limit
q→1 leads to a geometrical average �the information dimen-
sion�. For q=2 the generalized average is the ordinary arith-
metic average �the standard correlation dimension�, and for
q=3 it is a root-mean-square average. In practice, for a given
m and r,

pj 
1

n − 2nc − 1 �
i=nc+1

n

	„r − �X�ti� − X�tj��… �2�

with 	�x� being the unit step function, and nc=4 is the Theil-
er’s correction �14�. Finally, Iq�r� is taken to be equal to the
generalized q-point correlation sum �11�

Cq�m,r� =
1

nref
�
j=1

nref

�pj�q−1, �3�

where nref=5000 is the number of reference vectors. For
large dimensions m and small distances r in the scaling re-
gion it can be argued that Cq�m ,r��r�q−1�Dq, where Dq is an
approximation of the ideal limit r→0 in Eq. �1� for a given
q �11�.

FIG. 1. �a� The raw data of the radial flow velocity with
Alfvénic velocity, v and vA, observed by the Helios 2 spacecraft in
1977 from 116:00 to 121:21 �day:hour� at distance 0.3 AU and from
348:00 to 357:00 at distance 0.9 AU from the Sun. �b� The Elsässer
variable z+=v±vA for Bo pointing to/away from the Sun for the
detrended and filtered data using singular-value decomposition with
the five largest eigenvalues.

TABLE I. Characteristics of the solar wind filtered data, z+.

Skewness, 
3 0.59

Kurtosis, 
4 0.37

Relative complexity 0.09

Autocorrelation time, ta 7.05�103 s

Capacity dimension, D0 3.9

Correlation dimension, D2
a 3.4

aThe average slope for 6�m�10 is taken as �q−1�Dq.
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First, we calculate the natural logarithm of the standard
�q=2� correlation sum Cm�r�=C2�m ,r� versus ln r �normal-
ized� for various embedding dimensions: m=4 �dotted
curve�, m=5 �diamonds�, m=6 �triangles�, m=7 �squares�,
m=8 �crosses�, m=9 �pluses�, and m=10 �stars�. The slopes
D2,m�r�=d�ln Cm�r�� /d�ln r� in the scaling region of r should
provide the correlated dimension. The results obtained using
the moving average filter and singular-value decomposition
linear filter are presented in Fig. 2, while those obtained us-
ing the nonlinear Schreiber filters have been discussed in
�8,9�. Since the correlation sum is simply an arithmetic av-
erage over the numbers of neighbors, this can yield mean-
ingful results for the dimension even when the number of
neighbors available for some reference points is limited in
most real dynamical systems. If the D-dimensional attractor
exists, we expect a plateau of the slopes for m�D and in the
worst case for m2D. For m large enough an average slope
in the scaling region indicates a proper correlation dimension
D2. We have a clear plateau which appears already for
m=4 �dotted curve� and m=5. For higher dimensions,
m�8, the plateau is still present but more smeared out by
the statistical fluctuations at small r. In our case of the
singular-value decomposition filter the slope of the calcu-
lated correlation sum saturates for m5, with an average for
6�m�10 of D2=3.35±0.21; see Ref. �8�. This is consistent
with the attractor of the low-dimension.

Second, the generalized dimensions Dq in Eq. �1� as a
function of q are shown in Fig. 3. It is well known that for
q�0 we have some basic statistical problems. Nevertheless,
in spite of large statistical errors �especially for q�0� the
multifractal character of the measure can still be discerned.
Therefore, one can say that the spectrum of dimensions still
exhibits the multifractal structure of the slow solar wind in
the inner heliosphere. In order to quantify that multifractality
we use a simple two-dimensional analytical model of the
dynamical system. Namely, we consider the generalized self-
similar baker’s map acting on the unit square with two pa-
rameters describing uniform compression and natural invari-
ant measure on the attractor of the system �2�. In this model,
the probability of visiting one region of the square is p �say
p�1/2�, so that the probability of visiting the remaining
region is 1− p. Another parameter s�1/2 describes both the

uniform stretching and folding in the phase space, i.e., s is a
folding and dissipation parameter.

In the case of uniform compression the results can be
obtained analytically; for any q in Eq. �1� one has for the
generalized dimension of the attractor projected onto one
axis �2�

�q − 1�Dq =
ln�pq + �1 − p�q�

ln s
. �4�

In the absence of dissipation �s=1/2� one recovers the for-
mula for the well-known multifractal cascade p model for
fully developed turbulence �15�, which obviously corre-
sponds to the generalized weighted Cantor set �1�. In particu-
lar, the usual middle one-third Cantor set without any multi-
fractality is recovered with p=1/2 and s=1/3. The
difference of the maximum and minimum dimensions,
associated with the least-dense and most-dense points on the
attractor, correspondingly, is D−�−D+�=ln�1/ p−1� / ln�1/s�
and in the limit p→0 this difference rises to infinity. Hence,
for a given s the parameter p can be regarded as a degree of
multifractality. For illustration the results of Dq+3 fitted to
the experimental values with p=0.12 and s=0.47 in Eq. �4�
are also shown in Fig. 3 by a dashed-dotted line. We see that
the multifractal spectrum of the solar wind is roughly con-
sistent with that for the multifractal measure on the self-
similar weighted baker’s map. The action of this map exhib-
its stretching and folding properties leading to sensitive
dependence on initial conditions; it could be a suitable model
for a solar wind behavior. Clearly, the obtained values of the
parameters s and p demonstrate small dissipation of the com-
plex solar wind system and show that some cubes that cover
the attractor of our dynamical system are visited one order of
magnitude more frequently than some other cubes, as is il-
lustrated in our previous paper, see Fig. 5 of Ref. �8�.

The obtained measures of the attractor have been sub-
jected to the surrogate data test �16�. As has been demon-
strated in Fig. 8 of Ref. �8�, if the original data are indeed
deterministic, analysis of these surrogate data will provide
values that are statistically distinct from those derived for the

FIG. 2. The slopes D2,m�r�=d�ln Cm�r�� /d�ln r� of the correla-
tion sum Cm�r� versus ln r �normalized� obtained for detrended and
filtered data are shown for various embedding dimensions m.

FIG. 3. The generalized dimensions Dq in Eq. �1� as a function
of q. The correlation dimension is D2=3.4±0.2 �see Table I�. The
values of Dq+3 are calculated analytically for the weighted baker’s
map with p=0.12 and s=0.47 �dashed-dotted�.
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original data. In particular, the slope of the correlation sum
increases with m �no saturation�, and Lempel-Ziv complexity
calculated for shuffled data becomes clearly 1.0, as it should
be for a purely stochastic system. Again, we have found that
the solar wind data are sensitive to this test.

In conclusion, we have shown that the singular-value de-
composition filter removes some amount of noise, which is
sufficient to calculate the generalized dimensions of the solar
wind attractor reconstructed in the phase space. The obtained
multifractal spectrum of this attractor is consistent with that
for the multifractal measure on the self-similar weighted bak-
er’s map. The action of this map exhibits stretching and fold-
ing properties leading to sensitive dependence on initial con-
ditions. The values of the parameters fitted demonstrate
small dissipation of the complex solar wind dynamical sys-
tem and show that some cubes that cover the attractor in
phase space are visited at least one order of magnitude more

frequently than other cubes. The obtained characteristics of
the attractor are significantly different from those of the sur-
rogate data. Thus these results show multifractal structure of
the solar wind in the inner heliosphere. Hence we suggest
that there exists an inertial manifold for the solar wind, in
which the system has multifractal structure, and where noise
is certainly not dominant. The multifractal structure, con-
vected by the wind, might probably be related to the complex
topology shown by the magnetic field at the source regions
of the solar wind.
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