
Discriminating additive from dynamical noise for chaotic time series

Marek Strumik*
Space Research Center, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland; Swedish Institute of Space Physics, P.O.

Box 537, SE-751 21 Uppsala, Sweden

Wiesław M. Macek
Faculty of Mathematics and Natural Sciences. College of Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw;

Space Research Center, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland

Stefano Redaelli
Space Research Center, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland

�Received 23 December 2004; revised manuscript received 23 May 2005; published 27 September 2005�

We consider the dynamics of the Hénon and Ikeda maps in the presence of additive and dynamical noise. We
show that, from the point of view of computations of some statistical quantities, dynamical noise corrupting
these deterministic systems can be considered effectively as an additive “pseudonoise” with the Cauchy
distribution. In the case of the Hénon and Ikeda maps, this effect occurs only for one variable of the system,
while the noise corrupting the second variable is still Gaussian distributed independent of distribution of
dynamical noise. Based on these results and using scaling properties of the correlation entropy, we propose a
simple method of discriminating additive from dynamical noise. This approach is also useful for estimation of
noise level for chaotic time series. We show that the proposed method works well in a wide range of noise
levels, providing that one kind of noise predominates and we analyze the variable of the system for which the
contamination follows Cauchy-like distribution in the presence of dynamical noise.
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I. INTRODUCTION

In an experimental situation, when measuring a physical
signal, it is not possible to completely eliminate errors that
contaminate our observations. If the errors are independent
of the internal dynamics of the system under observation, we
say that we deal with the additive �or measurement� noise.
On the other hand, if we use a physical model to describe the
system generating the observed signal, it is quite natural that
the model has some imperfections causing differences be-
tween the dynamics of the real and model systems. This kind
of error is called dynamical noise. In the case of additive
noise corrupting chaotic time series, one can easily estimate
noise level �see, for example, the algorithms described in
Refs. �1,2�� and perform considerable noise reduction �e.g.,
Refs. �3,4��. Estimation of noise level is also possible in the
case of dynamical noise by means of the method described in
Ref. �2�, but this algorithm is not capable of distinguishing
additive from dynamical noise. However, the question of
noise reduction in the case of dynamical noise is rather un-
clear, mainly due to some serious difficulties in the definition
of a clean trajectory. Nevertheless, in the case of dynamical
noise a shadowing trajectory can still be defined. One can
consider this trajectory as a clean trajectory, and the method
of finding the shadowing trajectory could be a suitable
method of noise reduction �5�. When observing and model-
ing a real system, we always deal with a mixture of both
kinds of noise. But often one encounters the case, that one

kind of noise predominates and the influence of the other
kind of noise on dynamics remains relatively small. In gen-
eral, the additive noise is distinct from the dynamical noise
and different procedures should be applied depending on
which case we deal with.

In this paper we address the question of simultaneous es-
timation of noise level and distinction between additive and
dynamical noise for chaotic time series. For that purpose, at
first we examine the influence of dynamical noise on the
natural invariant density of dynamical systems using the fol-
lowing procedure. We generate a noisy trajectory and find
the clean trajectory corresponding to the noisy trajectory.
Then we subtract the clean signal from the noisy signal and
examine properties of the distribution of this difference. As
we show further, this procedure allows us to find some char-
acteristic properties of the invariant density of systems con-
taminated with dynamical noise. In order to implement the
described procedure, we need a method of finding a clean
trajectory corresponding to the noisy trajectory. In the case of
chaotic systems, the best way to find the clean trajectory
seems to be the algorithm described in Ref. �5�. Namely, for
the system corrupted by the dynamical noise, we can find a
shadowing trajectory, which can be considered as the clean
trajectory. But applying the algorithm of Ref. �5� to nonhy-
perbolic systems �e.g., a nonhyperbolic case of the Hénon
map�, one can face the problem that in the proximity of the
points of homoclinic tangencies the algorithm does not work
properly, because errors can be as large as the signal itself.
Nevertheless, the clean trajectory can always be found in the
case of periodic systems. For that reason, in order to examine
directly the influence of dynamical noise on the invariant
density of dynamical systems evolving on attractors, we first*Electronic address: maro@cbk.waw.pl
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limit our considerations to the case of nonchaotic �periodic�
hyperbolic systems. We find that from the statistical point of
view the Gaussian or uniform dynamical noise can be con-
sidered as an effective additive “pseudonoise” with Cauchy
distribution. The approach based on replacing the dynamical
noise by an additive “pseudonoise” is suggested in Ref. �6�,
but there it is considered in the context of searching for the
optimal modeling of dynamical systems corrupted by dy-
namical noise. In the next step, keeping in mind the conclu-
sions obtained in the case of periodic systems, we examine
the behavior of the correlation entropy for chaotic nonhyper-
bolic systems corrupted by dynamical noise. We have chosen
the correlation entropy as a convenient characteristic of cha-
otic systems, which should be sensitive to the kind of noise
�additive or dynamical� corrupting our time series. Moreover,
we are able to obtain some analytical results related to the
correlation entropy in the presence of additive noise with an
arbitrary distribution. Based on these results, we argue that
examining scaling properties of the correlation entropy we
should be able to distinguish contaminations caused by ad-
ditive and dynamical noise. The scaling properties of the
correlation entropy should also depend on the amount of
noise in the time series, thus we should be able to estimate
the noise level in time series generated by a chaotic dynami-
cal system.

In Sec. II we examine the influence of dynamical noise on
periodic systems evolving on attractors. In Sec. III some the-
oretical results concerning scaling properties of the correla-
tion entropy in the presence of additive noise with arbitrary
distribution are discussed. We also propose a method of dis-
criminating additive from dynamical noise. In Sec. IV we
test our method for the case of chaotic time series for the
Hénon and Ikeda maps, and our main conclusions are sum-
marized in Sec. V.

II. INFLUENCE OF DYNAMICAL NOISE ON
NONCHAOTIC SYSTEMS

We first examine the influence of dynamical noise on the
invariant density of periodic systems that evolve on attrac-
tors. In the case of periodic systems, if we have a trajectory
obtained by iterations of the system corrupted by dynamical
noise, we can easily find the corresponding clean trajectory
generated by unperturbed dynamical system. Next, we can
subtract the clean signal from the noisy signal and examine
the distribution of the differences. This distribution should
reflect the way in which the invariant density for a given
variable is spread by the noise. We use the following defini-
tion of additive noise:

xi = xi� + �Ani. �1�

Here a signal xi corrupted by noise is the sum of a clean
signal xi� and noise ni. In this case �A determines the amount
of additive noise in the signal xi. As regards to dynamical
noise, we use the following iteration schema:

xi+1 = f�xi� + �Dni, �2�

where ni is a “noise vector” �the vector components are in-
dependent and identically distributed� and �D determines the

amount of dynamical noise, similarly as �A in the case of
additive noise. Therefore, the noise level in case of a signal
contaminated by additive or dynamical noise can be defined
as the ratio of the standard deviation of the noise term and
the standard deviation of the deterministic term.

We consider time series for two-dimensional dynamical
systems in nonchaotic regime of parameters. Namely, we
look at the Hénon map �7�

xn+1 = 1 − axn
2 + yn,

yn+1 = bxn �3�

for a=1.1, b=0.2, and the Ikeda map �8�

xn+1 = � + ��xn cos��n� − yn sin��n�� ,

yn+1 = ��xn sin��n� + yn cos��n�� , �4�

where �n=�−� / �1+xn
2+yn

2� and the following values of the
parameters are used: �=1.0, �=0.6, �=6.0, and �=0.4. For
such a set of parameters the Hénon map generates a stable
orbit of period four, and the Ikeda map has a stable orbit of
period 5. Both systems have been perturbed by dynamical
noise and have been subjected to the iteration schema de-
scribed above. The distributions of the difference of the
noisy time series SN and the clean time series SC for both
variables x and y for the Hénon map are shown in Fig. 1, and
the corresponding results for the Ikeda map are presented in
Fig. 2. We discuss the results for the systems contaminated
by Gaussian and uniform noise. The noise level we use in
this numerical experiment is equal to 0.1%. We cannot in-
crease the noise level too much, because we would like to
perform a reliable subtraction of the noisy and the clean sig-
nal. As a matter of fact, here we consider periodic trajecto-
ries, and even for the system corrupted by dynamical noise
the trajectories should remain nearly periodic. But for high
noise levels a perturbed state of the dynamical system can
jump to an attracting set of a point, which is not anymore the
consecutive point on the periodic trajectory. Such jumps can
radically change the noisy trajectory so that the procedure of
subtracting the clean from the noisy time series has no sense
anymore.

It is clear that the computed distributions shown in Figs. 1
and 2 are not Gaussian. The distributions for the x variable
for the Hénon map �Figs. 1�a� and 1�c�� and for the y vari-
able for the Ikeda map �Figs. 2�b� and 2�d�� are independent
of the distribution of the dynamical noise used in the numeri-
cal experiment. These distributions are also very far from the
Gaussian distribution. Looking for a simple �one-parameter
dependent� function describing these computed distributions,
we find that here we can practically use the Cauchy distribu-
tion. In the case of the x variable for the Hénon map �Figs.
1�a� and 1�c�� and for the y variable for the Ikeda map �Figs.
2�b� and 2�d��, the fit of the Cauchy function is quite good in
the range of differences SN−SC corresponding to the most
significant values of the probability distribution function,
which practically determine all the statistical properties of
the dynamical noise. It should be noted that one can see
some deviations from the Gaussian distribution also for the
variables y for the Hénon map and x for the Ikeda map.
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However, as shown in Figs. 1�b�, 1�d�, 2�a�, and 2�c� one
cannot approximate the computed distributions with the
Cauchy function. Presumably, the reason is that influence of
the dynamical noise is different for various variables of the
dynamical systems. Therefore, we can only conclude that
from the point of view of computation of some statistics for
a signal from a dynamical system contaminated by dynami-
cal noise, at least some variables of the system can be con-
sidered as corrupted by additive “pseudonoise” with Cauchy
distribution. If we find a statistics that is sensitive in some
way to the kind of distribution of noise, we should be able to

distinguish additive from dynamical noise, providing that we
are lucky and we deal with the appropriate �i.e., such that the
distribution of the difference SN−SC is Cauchy-like� variable
of the system.

III. THEORETICAL SOLUTION FOR THE BEHAVIOR OF
THE CORRELATION ENTROPY IN THE PRESENCE

OF ADDITIVE NOISE

Following the results obtained by Schreiber for Gaussian
noise �1�, we analyze the case of arbitrary distribution of

FIG. 1. Distribution of the dif-
ference of the noisy SN and the
clean SC time series for a periodic
Hénon map corrupted by dynami-
cal noise. Four cases are pre-
sented: �a� the variable x with
Gaussian noise, �b� the variable y
with Gaussian noise, �c� the vari-
able x with uniform noise, and �d�
the variable y with uniform noise.
We fit the computed probability
distribution function �PDF� by
Gaussian function �GFit� and
Cauchy function �CFit�.

FIG. 2. Distribution of the dif-
ference of noisy SN and clean SC

time series for a nonchaotic Ikeda
map corrupted by dynamical
noise. Four cases are presented:
�a� the variable x with Gaussian
noise, �b� the variable y with
Gaussian noise, �c� the variable x
with uniform noise, and �d� the
variable y with uniform noise. We
fit the computed probability distri-
bution function �PDF� by Gauss-
ian function �GFit� and Cauchy
function �CFit�.
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noise. Reconstructing phase space of a system by using the
method of the delay coordinates, we can find an
m-dimensional embedding for arbitrary m. On the other
hand, there is such dimension r, that the r-dimensional em-
bedding unfolds properties of the given dynamics. We would
like to find out the form of the dependence of the correlation
sum on radius � and embedding dimension m �the parameters
that are used in computing the correlation sum�, where the
additive noise level is assumed to be a parameter of this
relation. The definition of the correlation sum is given by

C��� =� dx��x��
B��,x�

dx���x�� , �5�

where B�� ,x� is the � neighborhood of a point x. As one can
see the correlation sum is determined by an invariant density
��x� in the embedding space. Therefore, first we have to find
a form of the invariant density for time series corrupted by
noise with an arbitrary distribution. The projection of a vec-
tor x in an m-dimensional embedding space to a subspace
spanned by the first r coordinates is denoted here by x̄ and
the projection to its �m−r�-dimensional orthogonal comple-
ment is denoted by x̃. Therefore, the invariant density of a
clean signal can be written in the following way:

�̂�x� = �̂r�x̄���x̃ − x̃0� , �6�

where �̂r�x̄� is the invariant density in the r-dimensional sub-
space and x̃0 is determined by x̄ through deterministic time
evolution. Let us assume that the time series is corrupted by
noise with a distribution f�xi�, and that the distribution of
noise in the m-dimensional embedding space can be factor-
ized as F�x�=�i=1

m f�xi�, where xi is the ith coordinate. Then
the invariant density of the contaminated signal is given by

�m�x� =� dx�F�x − x���̂�x�� . �7�

Due to the specific form of Eq. �6� and the factorization
property of the function F�x� one can write Eq. �7� as

�m�x� = Fm−r�x̃ − x̃0��r�x̄� , �8�

where �r�x̄� is

�r�x̄� =� dx̄�Fr�x̄ − x̄���̂r�x̄�� . �9�

Now we can turn to the calculation of the dependence of the
correlation sum on radius � and the embedding dimension m.
By using Eqs. �5� and �8� and applying simple transforma-
tions, we can write

Cm��� =� dxFm−r�x̃��r�x̄��
B��,x�

dx�Fm−r�x̃���r�x̄�� .

�10�

This allows us to extract the “r-dimensional” correlation sum
Cr���=�dx̄�r�x̄��B̄��,x̄�dx̄��r�x̄�� from Eq. �10�, and we obtain

Cm��� = Cr��� � dx̃Fm−r�x̃��
B̃��,x̃�

dx̃�Fm−r�x̃�� . �11�

The factorized form of the function F�x� considered here
gives us the possibility to calculate the integrals in Eq. �11�
directly by using their components

Cm��� = Cr����� dxf�x��
−�

�

dx�f�x��	m−r

= Cr���I���m−r,

�12�

where we denote the result of the integration in the square
brackets as I���. Equation �12� is a generalization of the re-
sult obtained by Schreiber �1� to an arbitrary distribution of
noise.

In this paper we are interested in scaling properties of the
correlation sum in two cases. The first case is the signal
contaminated by additive noise with the Gaussian distribu-
tion

fg�x� =
1

�g

2	

exp�−
x2

2�g
2	 . �13�

In the second case, based on the results obtained for periodic
systems corrupted by dynamical noise �see Sec. II�, we ex-
pect that for dynamical noise contaminating chaotic systems
the Cauchy distribution

fc�x� =
1

�c	�1 +
x2

�c
2� �14�

can effectively be used. Naturally, in the case of Gaussian
noise �g is the standard deviation of the distribution. Admit-
tedly, the standard deviation cannot be determined for the
Cauchy distribution, and the full width at half maximum
�FWHM�, which is equal to 2�c, can be a convenient mea-
sure of the dispersion of the distribution. Using Eqs. �13� and
�14�, one can calculate I��� used in Eq. �12� for the Gaussian
noise

Ig��� = 
2 erf� �

2�g
� �15�

and, correspondingly, for the Cauchy distribution

Ic��� =
2

	
arctan� �

�c
� . �16�

On the basis of the well-known relationship between the
correlation entropy and the correlation sum �9�

K2,r��� =
1

m − r
ln

Cr���
Cm���

�17�

and using Eqs. �12�, �15�, and �16�, we can obtain the corre-
sponding formulas for a Gaussian noise

K2,r
a ��� = Ka − ln�erf� �

2�a
�	 �18�

and for a noise with the Cauchy distribution
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K2,r
d ��� = Kd − ln� 2

	
arctan� �

�d
�	 . �19�

In view of possible application of these formulas, we have
already applied other notations here: �a corresponds to �g,
and �d is equal to �c. Considering the limit �a→0��d→0�
in Eq. �18� �Eq. �19��, we obtain that Ka�Kd� is the correla-
tion entropy of the unperturbed system. Equation �18� pre-
sents the dependence of the correlation entropy on parameter
� in a much simpler way than the similar formula discussed
in Ref. �10�. For K2,r��� calculated for a given time series,
one can assume relationship according to Eq. �18� or �19�
and fit the parameters Ka and �a, or Kd and �d �using, for
example, Levenberg-Marquardt algorithm �11��. As seen
from Eqs. �18� and �19�, the scaling properties of the corre-
lation entropy are independent of the embedding dimension
r, therefore we can obtain a quite large number of points at
fitting. Because K2,r

a ��� and K2,r
d ��� are described by different

functions, hence the kind of noise can be discriminated by
checking for which function we have a better fit to K2,r���
calculated from the time series. Also the fitted parameter �a
or �d gives us an estimation of the noise level in our data set.

IV. RESULTS AND DISCUSSION FOR CHAOTIC
SYSTEMS

In this section we present some results for the correlation
entropy in the presence of additive and dynamical noise for
chaotic systems. We use the TISEAN package �12� for com-
putation of the correlation entropy. We examine time series
of the same systems as in Sec. II, namely, the Hénon and
Ikeda maps, but using values of parameters corresponding to
chaotic behavior of these systems. Therefore, here we use the
following values of the parameters: a=1.4, b=0.2 for the
Hénon map, and �=1.0, �=0.7, �=6.0, and �=0.4 for the
Ikeda map, as given by Eqs. �3� and �4� for the dynamical
rules of the two systems, correspondingly.

In Figs. 3�a� and 3�b� we show examples of the depen-
dence of the correlation entropy for the Hénon map cor-
rupted by additive and dynamical noise, correspondingly.
One can see that the scaling properties of the correlation
entropy do not really depend on embedding dimension, as
correctly predicted by Eqs. �18� and �19�.

Some examples of fitting the correlation entropy by the
functions given by Eq. �18� and also Eq. �19� for the Hénon
map in the presence of either additive or dynamical noise are
shown in Fig. 4. “Fit 1” corresponds to fitting by Eq. �18�,
and “Fit 2” denotes fitting by Eq. �19�. One can see that if we
fit the “right” function to a given case the matching is much
better than in the case when we try to fit the “wrong” func-
tion. Obviously, we are interested in fitting in some range of
scales, namely between the small scales, where noise domi-
nates entirely the behavior of the correlation entropy, and the
large scales comparable to the size of the attractor. In order
to check formally which function fits better a given depen-
dence of K2��� �computed on the basis of time series� and to
see whether the difference between fits is statistically signifi-
cant, we use simple chi-square goodness-of-fit test. In our
case the Levenberg-Marquardt algorithm �11� is used to find

the best fit. The procedure of fitting consists in minimizing
the following quantity:


2 = 
i=1

N
�yi − f�xi;a1, . . . ,aM��2

�i
2 �20�

with respect to the fitted parameters a1 , . . . ,aM. Here yi is our
set of points, �i are the errors of yi, and f�xi ;a1 , . . . ,aM� is
the M-parameter-dependent fitted function. The smaller is
the quantity 
2 for a fit, the better fit we find. By definition

2 is subjected to the chi-square distribution with the number
of degrees of freedom equal to N−M. In our case the null
hypothesis is defined in this way: a given dependence of
K2��� agrees with the fitted function. If 
2 computed for the
best fit exceeds the critical value of 
2 for a given confidence
level �95% in our case�, then we reject the null hypothesis.
For every type of noise we examine two cases, i.e., we try to
fit the correlation entropy obtained from the data by the func-
tions of Eqs. �18� and �19�. In Fig. 5 we can see the results of
this analysis. The values of 
2 of the best fit versus the
amount of noise are shown there. The line C0.95 represents
the critical values of 
2 computed for the confidence level of
95% �the line is not at constant level because, in general, for
different noise levels we have different numbers of points at
fitting, what implies changing number of degrees of freedom
of the chi-square distribution�. As we can see, for every noise
level the fit by the “right” function is much better than the fit
by the “wrong” function. But following the formal statistical
approach, we must conclude that at confidence level of 95%
the difference between the fits is statistically significant only

FIG. 3. Examples of dependence of the correlation entropy
K2��� for the Hénon map corrupted by �a� additive and �b� dynami-
cal noise.
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for noise levels higher than about 10−4 for additive noise. For
dynamical noise the corresponding lower limit is about 10−5.
Therefore, at least in these cases, the scaling properties of the
correlation entropy seem to be useful for distinguishing the
contaminations caused by additive noise from that of dy-
namical noise. The method proposed in Sec. III of discrimi-
nating additive from dynamical noise seems to work for the
two considered dynamical systems and for some range of
noise levels.

In Fig. 6 we show the estimated amount of noise as a
function of the actual amount of noise for the Hénon and
Ikeda maps. The estimation of the amount of noise is ob-

tained by the method based on the scaling properties of the
correlation entropy, as proposed in Sec. III. In the case of
additive noise we use noise levels from 0.001 to 20 %, and in
the case of dynamical noise from 0.001 to 2 % for the Hénon
map and from 0.001 up to 13 % for the Ikeda map, respec-
tively. As one can see from Fig. 6 this method works quite
well for noise levels in the range of many orders of magni-
tude, although some deviations can appear for very small
noise levels.

In the case of additive noise the parameter �a in Eq. �18�
corresponds directly to the parameter �A in Eq. �1�, therefore
we put the straight line y=x in the plots for the case of

FIG. 4. Examples of fitting
K2��� for the Hénon map cor-
rupted by additive noise ��a� and
�b��, and by dynamical noise ��c�
and �d��. The both theoretical de-
pendencies: Eq. �18� �Fit 1� and
Eq. �19� �Fit 2� are tested here. In
these plots K2��� is the average
over the embedding dimensions
from 4 to 15.

FIG. 5. Results of the chi-
square goodness-of-fit statistical
test. Four cases are shown: the
Hénon map with �a� additive and
�b� dynamical noise, and the Ikeda
map with �c� additive and �d� dy-
namical noise. The quantity 
2 of
the best fit by Eq. �18� �Fit 1� and
Eq. �19� �Fit 2� is plotted here.
Line C0.95 represents critical val-
ues of 
2 at the confidence level
of 95%.

STRUMIK, MACEK, AND REDAELLI PHYSICAL REVIEW E 72, 036219 �2005�

036219-6



additive noise in Figs. 6�a� and 6�c�. But in the case of dy-
namical noise the parameter �d in Eq. �19� does not corre-
spond directly to the parameter �D in Eq. �2�. The parameter
�d is equal to the half of the FWHM for the Cauchy distri-
bution �see Sec. III� and �D is the standard deviation of the
noise term in Eq. �2�. On the basis of our results, we can
conclude that dynamical noise can probably be considered as
an additive noise with Cauchy distribution. However, we do
not yet have any theoretical explanation of this finding.
Hence any theoretical relationship between �d and �D is still
missing. Therefore, we have to find this relationship numeri-
cally by examining the dependence of the estimated amount
of noise �d on the actual amount of noise �D for the Hénon
and Ikeda maps corrupted by dynamical noise. As one can
see in Figs. 6�b� and 6�d� for the case of dynamical noise we
have numerically found the dependence as �d=1.4�D with
the same coefficient for both systems. Of course, some the-
oretical results for this relationship would be useful in order
to check, if our results also apply for other chaotic systems.

So far we have considered only the cases of time series
corrupted by either additive or dynamical noise. However, in
experimental data we always have a mixture of the two kinds
of noise. This situation may cause some additional problems,
which we would like to discuss here. We have shown that
additive and dynamical noise affect the functional depen-
dence of K2��� in different manners. It turns out that in some
way this fact results also in different “strength” of each kind
of noise. In Fig. 7�a� we show the correlation entropy for
time series corrupted by noise for the following three cases:
both kinds �additive and dynamical� are present and the pa-
rameters �A and �D have equal values, or one of these pa-
rameters is set to zero. In the first case, when �A=�D, dy-
namical noise seems to predominate over additive noise,
because in wide range of � ,K2��� calculated for time series
corrupted by both kinds of noise overlaps with K2��� for time
series corrupted only by dynamical noise. We see that the

shape of dependence of K2��� seems to be determined mainly
by dynamical noise. This means that dynamical noise of a
given level affects dynamical systems much stronger than
additive noise of the same level. Influence of noise on dy-

FIG. 6. Estimated amount of
noise versus actual amount of
noise for the Hénon and Ikeda
maps. Four cases are shown: �a�
the variable x for the Hénon map
corrupted by additive noise; �b�
the variable x for the Hénon map
corrupted by dynamical noise; �c�
the variable y for the Ikeda map
corrupted by additive noise; �d�
the variable y for the Ikeda map
corrupted by dynamical noise.

FIG. 7. Comparison of influence of additive and dynamical
noise on the Hénon system. Two cases are shown: �a� the levels of
additive and dynamical noise are the same, �b� the level of additive
noise is chosen to cause similar shortening of the plateau in depen-
dence of K2��� as dynamical noise. In the case �a� mainly dynamical
noise determines the scaling properties of the correlation entropy,
while in the case �b� additive noise predominates.
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namical systems results in shortening of the plateau that usu-
ally appears in a functional dependence of K2��� on �. Natu-
rally, noise increases the values of K2��� for a certain range
of small values of �. Therefore, the higher is the level of
noise, the shorter plateau in the dependence of K2��� is ob-
tained. If we look at “strength” of influence of noise as its
ability to shorten the plateau, then dynamical noise seems to
be about 6 times stronger than additive noise, i.e., dynamical
noise of a given level causes similar shortening of the pla-
teau as additive noise of several times higher level than the
level of dynamical noise �see the ratio of �A /�D=6 in Fig.
7�b��. However, one can see in Fig. 7�b� that if the level of
additive noise is several times higher than the level of dy-
namical noise, then the shape of dependence of K2��� is prac-
tically determined by additive noise. The results presented in
Fig. 7 are obtained for the Hénon map, but similar behavior
is also observed for the Ikeda map. Summarizing, we hope
that our method will work well, when one kind of noise
predominates over the second kind of noise. In this case we
are able to estimate the level of predominating kind of noise,
but we neglect the other kind of noise. Some problems may
only appear in a very special situation when the “strengths”
of additive and dynamical noise are comparable. In this case
we can have a problem with fitting experimental K2��� by the
functions given in Eqs. �18� and �19� and statistical tests can
give us an indication that none of the theoretical functions
fits well the experimental dependence of K2��� on �.

V. CONCLUSIONS

In this paper we have considered the Hénon and Ikeda
maps in the presence of additive and dynamical noise. We
have shown that dynamical noise corrupting a deterministic
dynamical system evolving on an attractor can be considered
as an additive “pseudonoise” with Cauchy distribution.
Based on these results, we propose a method of discriminat-
ing additive from dynamical noise, which is also useful for
estimation of the noise level in chaotic time series. As dis-
cussed in Sec. III this method uses the scaling properties of

the correlation entropy, which depend on the distribution of
additive noise contaminating a given time series. As we have
shown, our method seems to work well throughout many
orders of magnitude of noise levels, independent of the dis-
tribution of the dynamical noise. Application of our method
seems to be restricted to the “right” variable of the consid-
ered system, i.e., the variable for which the corrupting noise
follows Cauchy-like distribution in the presence of dynami-
cal noise. Therefore, applying our method and inferring that
the noise is additive, one may not be sure of that conclusion.
But using our method and identifying dynamical noise, one
obtains a rather reliable conclusion.

We have studied both hyperbolic and nonhyperbolic cases
of the Hénon and Ikeda maps. The scaling properties of the
correlation entropy in the case of nonhyperbolic systems in-
dicate that dynamical noise contaminating the systems can
be considered as an additive Cauchy noise. The fact that the
same feature �appearance of the Cauchy distribution� can be
observed in the case of the hyperbolic systems is somewhat
surprising. As a matter of fact, as argued in Ref. �13�, the
existence of the points of homoclinic tangencies radically
changes the dynamics of the nonhyperbolic systems cor-
rupted by dynamical noise. From this point of view, the in-
dependence of the scaling properties of the correlation en-
tropy on existence of points of homoclinic tangencies is very
interesting. We do not claim that points of homoclinic tan-
gencies have no influence on the systems corrupted by dy-
namical noise, but our statistical approach does not seem to
be sensitive to this effect. Further results in this matter would
be desirable, especially any explanation for the generation of
the Cauchy-like distribution requires additional studies.
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