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Abstract

We analyse time series of velocity #uctuations of the low-speed stream of the solar wind measured by the Helios spacecraft in the inner
heliosphere. We use a nonlinear 2lter to give faithful representation of nonlinear behaviour of the #ow. We demonstrate that the in#uence
of noise in the data records can be much more e3ciently reduced by a nonlinear 2lter than with conventional 2lters. We argue that due
to this nonlinear noise reduction we get with much reliability estimates of the largest Lyapunov exponent and the Kolmogorov entropy.
The Lyapunov exponent and the entropy are plausibly positive, which would exhibit sensitivity to initial conditions. These results show
that the solar wind in the inner heliosphere is likely a deterministic chaotic system. We hope that these studies could shed light on the
physical mechanism of coronal structure. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The entropies and the Lyapunov exponents are very im-
portant characteristics of complex dynamical systems. The
Kolmogorov entropy is the rate of creation of information as
a chaotic orbit evolves (Schuster, 1989; Ott, 1993; Ott et al.,
1994). The entropy is equal to zero for a regular (periodic)
system, a constant greater than zero for a chaotic determin-
istic system, and in2nite for a stochastic random system; a
positive and 2nite entropy implies chaos. The chaotic attrac-
tor has at least one unstable direction corresponding to a pos-
itive Lyapunov exponent. Basically, chaos arises from the
exponential growth of in2nitesimal perturbations, together
with global folding mechanisms to guarantee boundedness
of the trajectories describing the system in phase space. The
properly averaged exponent of this increase is characteris-
tic for the system underlying the data and quanti2es chaos
and is called the Lyapunov exponent (Schuster, 1989; Ott,
1993; Ott et al., 1994). However, both the Lyapunov ex-
ponent and entropy describe a kind of scaling behaviour in
the limit as the distances r between points on the attrac-
tor approach zero. These characteristics are sensitive to the
presence of small amounts of noise, which may obscure the
underlying scaling properties, unless the data are 2ltered to
reduce noise contamination. In particular, a zero entropy or
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Lyapunov exponent can be driven positive by noise, or in
the latter case just drift slightly positive as the exponent #uc-
tuates near zero. Therefore, in order to detect and quantify
chaos in any real dynamical system, it is necessary to deal
with a cleaned experimental signal.

Following space physics applications, e.g., Kurths and
Herzel (1987), Carbone et al. (1995), we consider the inner
heliosphere. Since the 1960s we have known that besides
electromagnetic radiation, the Sun also radiates charged par-
ticles forming a plasma blowing nearly radially outward
from the Sun. The solar wind plasma #owing supersonically
away from the Sun is quite well modelled within the frame-
work of hydromagnetic theory. This continuous #ow has
two forms: slow (≈ 300 km s−1) and fast (≈ 900 km s−1)
(Schwenn, 1990). The fast wind is associated with coro-
nal holes and is relatively uniform and stable, while the
slow wind is quite variable in terms of velocities. Indication
for a chaotic attractor in the slow solar wind has recently
been given in Macek (1998, 1999), Macek and Obojska
(1996, 1997, 1998). In particular, Macek (1998) has pro-
vided tests for nonlinearity in the solar wind data, includ-
ing a powerful method of singular-value decomposition (Al-
bano et al., 1988) and statistical surrogate data tests (Theiler
et al., 1992). Further, Macek and Redaelli (2000) have
shown that the Kolmogorov entropy of the attractor is pos-
itive and 2nite, as it holds for a chaotic system.

In this paper, we have extended our previous results
on dimensional time series analysis (Macek, 1998) and
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estimating of the Kolmogorov entropy (Macek and Redaelli,
2000). Namely, we focus on the maximal Lyapunov ex-
ponent of the solar wind that should be consistent with
the Kolmogorov entropy. Therefore, we apply the modern
technique of nonlinear noise reduction (Schreiber, 1993a,
b; Kantz et al., 1993), which allows a more realistic cal-
culation of these characteristics of the solar wind #ow,
directly from the cleaned experimental signal. The data and
importance of noise reduction are discussed in Section 2.
The method of estimation of the entropy and Lyapunov ex-
ponent is reviewed in Section 3. Section 4 is devoted to the
main results of our calculations. In particular, we show that
the correlation entropy and the largest Lyapunov exponent
are positive and 2nite, as it should be for a chaotic system.
The dimension is only brie#y discussed in Section 4. In this
way, we have further supported our previous conjecture
that trajectories describing the system in the inertial mani-
fold of phase space asymptotically approach the attractor of
low-dimension. These results provide some evidence that
the complex low-speed solar wind is likely a determinis-
tic chaotic system. One can also expect that this attractor
should contain information about the dynamic variations
of the coronal streamers. It is also possible that it repre-
sents a structure of the time sequence of near-Sun coronal
2ne-stream tubes, see Macek (1998), Macek and Redaelli
(2000) and references therein. Naturally, fast-speed streams
should have quite diFerent dynamics, and we have not yet
found any scaling properties similar to those for the slow
wind. We limit our study to the low-speed stream.

2. Data and noise

We analyse the Helios data using the radial velocity
component �, measured in the heliosphere at ∼ 0:3 AU
(Schwenn, 1990). These raw data of N = 4514 points,
with sampling time of It = 40:5 s, are presented in
Fig. 1(a). As discussed in Macek (1998), slow trends
(349:7 + 21:74t − 96:61t2, with t being a fraction of the
total sample) were subtracted from the raw data and the
resulting original data after detrending are now denoted by
xi = �(ti), in km s−1, i= 1; : : : ; N . The chosen interval is
(after detrending) typical for the low-speed solar wind dur-
ing roughly stationary conditions, i.e., if nothing dramatic
happens (with no shocks, discontinuities, etc.). The samples
near the Sun and near the Earth’s orbit (during the solar
minimum and maximum) give basically the same main re-
sults; may be the solar wind #uctuations are more turbulent
near the Sun. Therefore, we have chosen a sample near the
Sun. Anyway, the same sample is chosen by Macek (1998),
Macek and Redaelli (2000), and in the present paper in
order to compare three important characteristics of the so-
lar wind #ow, namely: dimension, entropy, and Lyapunov
exponent, correspondingly.

However, in Macek (1998, Fig. 1(b)) these data were
eightfold smoothed (replacing each data point with the av-

Fig. 1. The radial velocity � observed by the Helios 1 spacecraft in 1975
from 67:08:20.5 to 69:11:07 (day:h:min) at distances 0:32 AU from the
Sun; (a) the original data, (b) the detrended 2ltered data after nonlinear
noise reduction, and (c) the noise removed by nonlinear 2lter.

erage of itself and its two nearest neighbours). Certainly,
this is a particular linear 2nal impulse response (FIR) 2lter,
which should preserve the correlation dimension (Ott et al.,
1994). On the other hand, in order to use 2lters correctly
and to check their e3ciency, it is important to estimate the
level of noise in the data before and after 2ltering (cf. Badii
et al., 1988). Therefore, we have discussed the in#uence of
noise reduction in detail in Macek and Redaelli (2000).

More speci2cally, following Schreiber and Kantz (1995),
our approach to noise reduction is to assume that the
unknown true signal yi is generated by a deterministic
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dynamics, whereas the noise 
i is random, i.e., one mea-
sures the noisy signal xi =yi + 
i. This is often referred as
measurements noise, which does not need necessarily be
‘instrumental’ only. Often the noise enters the dynamics in
a more subtle way (dynamical noise, rather than measure-
ment noise), and the two cannot be disentangled even in
principle. In general, we do not know a priori, which kind
of noise we have in the data, except may be instrumental er-
rors. Admittedly, this puts any interpretation of the data on
shaky ground. However, we believe that in our case there
are underlying dynamical processes upon which the noise
has been superimposed, see Macek (1998), Macek and
Redaelli (2000). Here, as in Macek and Redaelli (2000),
we assume that the data can be decomposed into two com-
ponents. xi =yi + 
i, the clean signal and some additive
noise. The idea is to replace the measurement xi, which
contains noise, by a ‘cleaned’ value xc

i ≈ yi. For example,
in the case of the moving average FIR 2lter we would
have

xc
i =

1
2l + 1

l∑
j=−l

xi+j: (1)

The estimated noise level in the original data is 4–6%
(Macek, 1998; Macek and Redaelli, 2000). Certainly, the
moving average 2lter removes some amount of noise. How-
ever, we have veri2ed that after the moving average linear
2lter of Eq. (1) we still have a substantial amount of noise
of 2–5%, preventing us from any reliable estimation of the
entropy and Lyapunov exponent.

Instead of using this linear 2ltering of the signal, we
apply a nonlinear 2lter in order to reduce the noise more
e3ciently and to give a faithful representation of the
nonlinear behaviour of the solar wind. Many sophisticated
nonlinear 2ltering algorithms are available that exploit the
local dynamical behaviour to identify and remove noise
from the experimental data, for a review see, e.g., Kostelich
and Schreiber (1993). For example, projective schemes
move the observations at each point onto a subspace that
approximates the tangent plane to the manifold containing
the attractor in the phase space of the system (Kantz et al.,
1993). These algorithms imply global or local approxima-
tion of the underlying dynamics inferred from the data. One
of these nonlinear 2lters proposed by Schreiber is very sim-
ple; we just replace each point on the noisy trajectory by the
average value of its neighbours (Schreiber, 1993a). In
some way, this average could be regarded as a ‘zero-order’
approximation of this dynamics locally by a constant.
Surprisingly, this extremely simple nonlinear 2lter is very
e3cient, especially for short and slightly noisy data. The
advantages of this particular method are also discussed by
Macek and Redaelli (2000). We have shown that in the case
of the solar wind data the noise has been reduced by half
an order of magnitude, below 1%. Therefore, as in Macek
and Redaelli (2000), in this paper we use the Schreiber
2lter.

More speci2cally, the nonlinear Schreiber 2lter works in
embedding space of dimension 2l + 1 (Schreiber, 1993a).
We construct vectors in this embedding space that involve
past and future coordinates Xi = (xi−l; : : : ; xi+l), de2ne a
neighbourhood of size , |Xi−Xj|¡, and then replace the
data point xi by its mean value in the neighbourhood,

xc
i =

1
ni

∑
|Xi−Xj|¡

xj; (2)

where ni is the number of elements of this neighbourhood
Schreiber (1993a).

In practice, we average over segments of the trajectory
that are close for l time steps in the past and l in the fu-
ture. The size of the neighbourhood should be larger than
the noise level assumed in the data. The procedure can be
iterated taking decreasing  until no neighbours are found
and no further correction is made (usually 2–3 iterations are
enough). Summarizing, we use the Schreiber 2lter, which
averages in embedding space of a chosen dimension 2l + 1
and a de2ned neighbourhood of size , about 2–3 times of
the estimated initial noise level (Schreiber, 1993a). We have
performed three iterations taking the following input param-
eters: l= 3, = 0:15; l= 6, = 0:08; and l= 6, = 0:012.
The 2ltered data after this procedure are shown in Fig. 1(b),
and the noise (that is the diFerence between the original
data in Fig. 1(a) after detrending and the 2ltered data) is
presented in Fig. 1(c). It is worth noting that only after non-
linear 2ltering has the noise e3ciently been reduced to 0.3–
0.9% i.e., by half an order of magnitude, as compared with
the original data.

Using our time series of equally spaced, detrended
and cleaned data, xc, we construct a large number of
vectors in the embedding phase space of dimension m,
X(ti) = [xc(ti); xc(ti + �); : : : ; xc(ti + (m − 1)�)], where
i= 1; : : : ; n with n=N − (m− 1)�. Obviously, the elements
of vectors are not really independent, even before 2ltering.
However, before calculating a particular characteristic of
the attractor, we choose a proper delay time, �, for the vec-
tors constructed from the cleaned experimental data, i.e.,
after detrending and nonlinear noise reduction as discussed
in Macek (1998). This make certain that elements of each
vectors after nonlinear noise reduction are at least linearly
time independent. Therefore, we hope that this does not
aFect the correlation entropy and the maximal Lyapunov
exponent.

As in Macek (1998), Macek and Redaelli (2000), we
choose for the entropy a time delay �= 250It slightly
larger than the 2rst zero of the autocorrelation function,
t0 = 212It, (〈xc(t)xc(t + t0)〉 − 〈xc(t)〉2)=�2 = 0 with av-
erage velocity 〈xc〉= 0:02 km s−1 and standard deviation
�= 8:07 km s−1. Table 1 summarizes selected calculated
characteristics of the detrended data cleaned by using of the
Schreiber 2lter shown in Fig. 1(b); note also ta in Table 1
when the autocorrelation function decreases by a factor of
1=e.
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Table 1
The solar wind velocity #uctuations data after nonlinear noise reduction

Number of data points, N 4514
Sampling time, It 40:5 s
Skewness, �3 1.88
Kurtosis, �4 7.53
Autocorrelation time, ta 1:6 × 103 s
Correlation dimensiona, D2 2:7 ± 0:3
Entropyb (q= 2); K2 0:10 ± 0:06
Largest Lyapunov exponentc, �max 0:10 ± 0:02
Predictability horizon time ∼ 104 s

aThe average slope for 66m6 10 is taken as D2.
bThe average (Im= 3) spacing between slopes for 86m6 12 is

taken as K2.
cIn the same units as K2 (base e).

3. Entropy and Lyapunov exponent

The conventional Boltzmann entropy (zero order, q= 0)
gives information about the number of states available for
the dynamical system in phase space (for a given precision
r, it is the number of boxes of size r). Therefore, it does
not provide any information how the system evolves; this
measure of disorder is, therefore, useful only for stochas-
tic systems (conventional thermodynamics, assuming that
the system is at equilibrium and all accessible microscopic
states are visited equally). Instead, we use here the Renyi–
Kolmogorov generalized q-order entropy that takes into ac-
count how often these states are visited by a trajectory,
i.e., provides information about the evolution of the system.
Thereby, in particular, the Kolmogorov–Sinai information
entropy (q= 1) and the correlation entropy (q= 2) provide
important information about the dynamics and are useful
also for nonlinear deterministic systems (the latter is eas-
ier to calculate). It is worth noting, in particular, that the
system that creates information as its orbit evolves is cer-
tainly chaotic. On the other hand, stochastic noisy system
occupies all available phase space, and in the ideal case (in-
2nite number of states) the correlation entropy would be
in2nite.

The formal de2nition of the generalized entropy is as
follows. We divide the embedding space into a large num-
ber M (r) of equal hypercubes of size r, which cover the
presumed attractor. If pj is the probability measure that a
point from a time series falls in a typical jth hypercube,
using the q-order function Iq(r) =

∑
(pj)q; j = 1; : : : ; M ,

the q-order Renyi information entropy measure is,
e.g., Ott (1993), Ott et al. (1994), Grassberger and
Procaccia (1983a),

Kq = lim
r→0

lim
m→∞

1
1 − q

ln Iq(r): (3)

The related generalized dimension given by Dq =
limr→0 [ln Iq(r)=ln r]=(q − 1), see Ott (1993), Ott et al.
(1994), has been discussed extensively in Macek (1998).

In practice, q= 2 is su3cient and I2(r) is taken to be equal
to the correlation sum (Grassberger and Procaccia, 1983b)

Cm(r) =
1
nref

nref∑
i=1

1
n− 2nc − 1

n∑
j=nc+1

�(r − |X(ti) − X(tj)|)

(4)

with �(x) being the unit step function, where nref = 500 is
the number of reference vectors and nc = 4 is Theiler’s cor-
rection (Theiler, 1986). Since the correlation sum is simply
an arithmetic average over the numbers of neighbours, this
can yield meaningful results for the dimension and entropy
even when the number of neighbours available for some ref-
erence points is limited in most real dynamical systems. For
large m and small r it can be argued that

Cm(r) ˙ rD2e−m K2 ; (5)

where D2 and K2 are approximations of the ideal r → 0 and
m → ∞ limits in Eq. (3) for q= 2 (Grassberger and Pro-
caccia, 1983a). Namely, for values of r inside the plateau
in the dimensions plots, the factor rD2 in Eq. (5) is almost
constant, and we can determine the correlation entropy (sec-
ond order, q= 2) K2, with the Grassberger and Procaccia
method (Grassberger and Procaccia, 1983a), by plotting

K2;m(r) =
1

Im
ln

Cm(r)
Cm+Im(r)

(6)

both versus r for various m, and versus m for various r. For
su3ciently large m, and r in the scaling region, this should
converge towards a constant K2.

In general, the entropy Kq is at most the sum of the pos-
itive Lyapunov exponents

∑
�k , e.g., Ott et al. (1994). In

particular, the correlation entropy K2 should be its lower
bound: K26

∑
�k (positive). We restrict our calculations

to the maximal Lyapunov exponent �max, which gives the
averaged divergence rate of two initially closed trajectories,
I0 = |Xi(0) − Xj(0)|, in the phase space

It ≈ I0e�max t ; (7)

where It = |Xi(t)−Xj(t)| is the distance between two vec-
tors at time t.

Since we do not know the underlying equations of mo-
tion in the phase space of the system, we can try to estimate
the maximal Lyapunov exponent �max directly from the time
series. The 2rst algorithm for this purpose has been pro-
posed by Wolf et al. (1985). Unfortunately, it is not very
robust and one can easily obtain wrong results, in partic-
ular in the presence of noise. It seems that this algorithm
does not allow to test for the presence of exponential diver-
gence, but just assume its existence and thus yields a 2nite
exponent for stochastic data also, where the true exponent
is in2nite. Here, we use a quite robust algorithm of Kantz
(1994), which tests directly for the exponential divergence
of nearby trajectories. For each point of the reference tra-
jectory several neighbouring trajectories are taken into con-
sideration, averaging along the whole time series (not only
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one trajectory as is in the Wolf et al.’s algorithm). Therefore,
this method allows a much improved estimate of the largest
Lyapunov exponent, even for small data set.

Namely, we construct reference vectors Xi in the embed-
ding space of dimension m, using a time delay �= 14It
when the normalized autocorrelation function decreases to
1 − 1=e. Then we search for all neighbours Xj in a neigh-
bourhood of size ; |Xi −Xj|¡, and compute the average
of the distances between all the neighbouring vectors and the
reference vector, It = |xi+t − xj+t |, as a function of t, i.e.,
the modulus of the diFerence of the tth scalar components of
the two trajectories. The logarithm of the average distance
is some eFective expansion rate over the time span t. Then
we average again over a large number of reference vectors
along the whole trajectory (N = 4000 is taken). Therefore,
we compute the function

S(t;m; ) =
1
N

n∑
i=1

ln


 1
ni

∑
|Xi−Xj|¡

It


 ; (8)

where ni is the number of elements of this neighbourhood
(Kantz and Schreiber, 1997).

If S(t;m; ) exhibits a linear increase with identical slope
for all m larger than some m0 and for a reasonable range of
, than this slope is an estimate of �max. In practice we have
to choose two following parameters: m0 which is usually
equal to the correlation dimension, and  which should be
as small as possible to avoid saturation eFects, but large
enough such that on average each reference point has at least
a few neighbours. Naturally, the size of the neighbourhood
should be larger than the noise level assumed in the data.

4. Results and discussion

In Figs. 2–5 we show the results of our calculations as
obtained for the following data sets: (a) the original data
after detrending; (b) the cleaned experimental signal af-
ter nonlinear noise reduction; and (c) the noise that has
been removed by the nonlinear 2lter, corresponding to
Fig. 1(a)–(c), respectively.

In Fig. 2 we show the calculated probability distribu-
tions. The probability distribution for the cleaned data is
non-Gaussian, Fig. 2(b), more clearly than for the moving
average 2lter (cf. Macek, 1998). We have a large skewness
of 1.88 (as compared with its normal standard deviation of
0.06) and a very large kurtosis of 7.53, see Table 1; the
latter was small for the moving average 2lter. The calcu-
lated probability distribution of noise shown in Fig. 1(c) is
roughly consistent with a normally distributed set of ran-
dom numbers with �= 0:05, see Fig. 2(c). In this way, we
have veri2ed that by use of the nonlinear Schreiber 2lter we
have actually removed about 5% of the noise, leaving only
a small non-Gaussian component (below 1%).

First, the vertical spacing between the straight lines
K2;m(r) of Eq. (6) calculated using the nonlinear 2lter

Fig. 2. The probability distribution functions as obtained for the following
data sets: (a) the original data after detrending, (b) the 2ltered data
after nonlinear noise reduction, and (c) the noise removed by nonlinear
2lter. The distribution of the diFerence between the original and 2ltered
data (solid line) is consistent with a normally distributed set of random
numbers with � = 0:05 (dotted line).

versus the embedding dimension m (for m= 4; : : : ; 12)
averaged over various distances r in the scaling region
with a plateau is shown in Fig. 3, as discussed in Macek
and Redaelli (2000). Again, only for the 2ltered data in
Fig. 3(b) we see a clear saturation, while for the case of
noise, Fig. 3(c), the calculated entropy increases with m,
as it should be for a stochastic system. This demonstrates
that the modern technique of nonlinear noise reduction
(Schreiber, 1993a, b; Kantz and Schreiber, 1997) is neces-
sary for a realistic calculation of the Kolmogorov entropy
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Fig. 3. The function K2;m(r) (base e) versus the embedding dimension
m averaged over various distances r in the scaling region calculated for
(a) original data after detrending, (b) cleaned experimental signal after
nonlinear noise reduction, and (c) noise removed by nonlinear 2lter. Only
in case (b) does the average saturated value yield the correlation entropy
of K2 = 0:10 ± 0:06; see Tables 1 and 2, cf. Macek and Redaelli (2000,
Fig. 3).

in the solar wind #ow, and probably in most real complex
systems. We have veri2ed the robustness of the main re-
sults against the change in both parameters r and m. Thus,
we can expect that for su3ciently large m in the scaling
region K2 should converge towards a constant according to
Eq. (5). Admittedly, this is merely a certain approximation
of the ideal m → ∞ limit in Eq. (3) for q= 2.

Fig. 4. The function S(t) versus the time step t, for various  and 2xed
m= 4, obtained for (a) original data after detrending, (b) after nonlinear
noise reduction, and (c) noise removed by nonlinear 2lter. Only in case
(b) do we see a linear increase with identical slope (dotted line), which
yields the maximal Lyapunov exponent �max = 0:10 ± 0:02.

Finally, the spacings between the parallel lines averaged
in the saturation region 86m6 12 are taken as K2(r), see
Table 2. These saturated values averaged over ln r for var-
ious r in the scaling region, yield the correlation entropy
K2 = 0:10 ± 0:06 (base e), Table 1. A clear saturation of
K2;m(r) in Fig. 3(b) shows that the correlation entropy is
positive and .nite, as it should be for a chaotic system.

Second, the maximal Lyapunov exponent �max has been
estimated using the algorithm of Kantz (1994). In Fig. 4,
the function S(t) = S(t;m; ) de2ned in Eq. (8) is plotted
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Fig. 5. The function S(t) versus the time step t, for various m and
2xed = 0:012, obtained for (a) original data after detrending, (b) after
nonlinear noise reduction, and (c) noise removed by nonlinear 2lter. Only
in case (b), for m¿ 3, do the curves saturate to the straight dotted line
with slope 0.1.

versus the time t for various  and 2xed embedding dimen-
sion m= 4, larger than the dimension of the attractor (cf.
Ding et al., 1993; Takens, 1981). As seen in Fig. 4(a) for
the original data, containing about 5% of noise, we cannot
observe any linear increase; after few time steps, any initial
small distance quickly saturate to a mean absolute distance
typical for the attractor. Only after noise reduction, Fig. 4(b),
we see a linear increase with the same slope (dotted line),
which provides an estimate of the maximal Lyapunov ex-
ponent �max ≈ 0:1. Outside the scaling region, the function

Table 2
The correlation entropy K2(r) calculated from the cleaned experimental
data

ln r Average 86m6 12

−2:4 0:10 ± 0:03
−2:5 0:10 ± 0:04
−2:6 0:10 ± 0:06
−2:8 0:11 ± 0:07
−2:9 0:11 ± 0:08

Average over ln r 0:10 ± 0:06

Table 3
The maximal Lyapunov exponent �max calculated from the cleaned ex-
perimental data

 Average 06 t6 10

0.03 0:09 ± 0:03
0.02 0:09 ± 0:02
0.012 0:10 ± 0:01
0.0075 0:11 ± 0:01

Average over  0:10 ± 0:02

S(t) tends to a small constant, since the distances between
vectors cannot grow more than the size of the attractor.

In Fig. 5, we show the same function S(t) versus the
time t, but for various embedding dimension m and 2xed
= 0:012. After noise reduction, Fig. 5(b), for embedding
dimension m¿ 3 the curves saturate to the straight line with
slope �max ≈ 0:1. On the contrary, no linear increase can
be seen in Fig. 5(a) and (c). In addition, noise gives rise to
large #uctuation as the embedding dimension increases.

As well as for the entropy, after nonlinear noise reduction,
also for Lyapunov exponent we obtain quite robust results
against the change in both parameters m and . Using least
squares 2t for the linear parts of the curves 06 t6 10, and
averaging over , we can determine the numerical value of
the maximal Lyapunov exponent together with the error of
the 2t �max = 0:10 ± 0:02, as shown in Table 3. Naturally,
the errors given in Tables 1–3 are obtained assuming their
normal distribution over the scaling range and the maxi-
mum error in the scaling region is given here. Anyway,
we conclude that the largest Lyapunov exponent is positive
and 2nite, implying sensitive dependence on initial condi-
tions. Moreover its value is consistent with the correlation
entropy K2 = 0:10 ± 0:06 which should be its lower bound:
K26

∑
�i (positive). The time over which the meaning-

ful prediction of the behaviour of the system is possible is
roughly ∼ 1=�max, e.g., Ott et al. (1994). Hence the pre-
dictability of the system would be limited.

The measures of the attractor obtained have also been
subjected to surrogate data tests (Theiler et al., 1992). As
is shown in (Macek, 1998, Fig. 8), if the original data
are indeed deterministic, analysis of these surrogate data
will provide values that are statistically distinct from those
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derived for the original data. Again, we have found here that
the solar wind data are sensitive to this test. More speci2-
cally, if we plot K2;m(r) for the surrogates random data (with
the same scalar distribution as for the original data), we ob-
tain the same behaviour as for the original data for large
scale distances r, but no plateau is obtained for small r. This
means that for large scales the data cannot be distinguished
from random data. In this sense, the determinism becomes
visible only below a critical scale of r ∼ e−2 (Olbrich and
Kantz, 1997). Further, contrary to the case of the 2ltered so-
lar wind data there is no saturation of the function K2;m(r)
for the surrogate data for large m; instead this function in-
creases with m. Similarly, the function S(t) for surrogates
does not show any region of linear increase. Distances in-
crease rather diFusively, which corresponds to the fact that
the largest Lyapunov exponent is in2nite, as it should be for
stochastic data (Kantz and Schreiber, 1997).

5. Conclusions

To conclude, small amounts of noise (few percent) ob-
scure scaling properties at small scales, preventing us from
any reliable estimation of the Kolmogorov correlation en-
tropy and the largest Lyapunov exponent. The nonlinear
Schreiber 2lter e3ciently removes noise (leaving less than
one percent) and allows a more realistic estimation of these
invariants. The entropy and the largest Lyapunov exponent
are plausibly positive locally that would exhibit sensitive de-
pendence on initial conditions. The characteristics of the at-
tractor obtained are signi2cantly diFerent from those of the
surrogate data. Hence we suggest that there exists an inertial
manifold for the slow solar wind in the inner heliosphere,
in which the system is nonlinear and possibly chaotic. This
means that the observed irregular behaviour of the velocity
#uctuations results from intrinsic nonlinear chaotic dynam-
ics rather than from random external forces.
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