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Abstract

We analyse a time series of the radial component of the Elsésser variable for the low-speed stream of the solar wind plasma rep-
resenting Alfvénic fluctuations propagating downstream as measured in situ by the Helios spacecraft in the inner heliosphere. We
demonstrate that the influence of noise in the data can be efficiently reduced by moving average and singular-value decomposition
filters. We calculate the multifractal spectrum for the flow of the solar wind directly from the cleaned experimental signal. The result-
ing spectrum of dimensions shows a multifractal structure of the solar wind in the inner heliosphere. The obtained multifractal spec-
trum is consistent with that for the multifractal measure on the self-similar weighted Cantor set with the degree of multifractality of

~107",
© 2006 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

The generalized dimensions of attractors are impor-
tant characteristics of complex dynamical systems. Since
these dimensions are related to frequencies with which
typical orbits in phase space visit different regions of
the attractors, they provide information about dynamics
of the systems (Grassberger, 1983; Hentschel and Pro-
caccia, 1983; Halsey et al., 1986; Ott, 1993). If the mea-
sure has different fractal dimensions on different parts of
the support, the measure is multifractal (Mandelbrot,
1989).

The question of multifractality is of great importance
also for the solar wind community, because it allows to
investigate the nature of interplanetary hydromagnetic
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turbulence (e.g., Marsch and Tu, 1997; Burlaga, 2001;
Bruno et al., 2001). As a matter of fact multifractality
is related to intermittency (e.g., Carbone, 1993; Carbone
and Bruno, 1996). In particular, the multifractal spec-
trum was investigated with Voyager (magnetic field)
data in the outer heliosphere (e.g., Burlaga, 1991) and
with Helios (plasma) data in the inner heliosphere
(e.g., Marsch et al., 1996). Therefore, following other
space physics applications (e.g., Kurths and Herzel,
1987), we consider the inner heliosphere. The solar wind
plasma flowing supersonically outward from the Sun is
quite well modelled within the framework of the hydro-
magnetic theory. It is well known, based on, e.g., Helios
experimental data, that the velocity of the solar wind
varies widely, in general between about 300 km s~
(slow solar wind streams) and about 900 km s~ (fast so-
lar wind streams) Schwenn (1990). The fast wind is asso-
ciated with coronal holes and is relatively uniform and
stable, while the slow wind is quite variable in terms
of velocities. We limit our study to the low-speed stream.
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Indication for a chaotic attractor in the slow solar wind
has been given by Macek (1998), Macek and Obojska
(1997), Macek and Obojska (1998), Macek and Redaelli
(2000), Macek (2002). In particular, Macek (1998) has
calculated the correlation dimension of the recon-
structed attractor and has provided tests for nonlinearity
in the solar wind data, including a powerful method of
singular-value decomposition (Albano et al., 1988) and
statistical surrogate data tests (Theiler et al., 1992). Fur-
ther, Macek and Redaelli (2000) have shown that the
Kolmogorov entropy of the attractor is positive and fi-
nite, as it holds for a chaotic system. The entropy is plau-
sibly constrained by a positive local Lyapunov exponent
that would exhibit sensitive dependence on initial condi-
tions of the system.

Recently, we have extended our previous results on
the dimensional time series analysis (Macek, 1998).
Namely, we have applied the technique that allows a
realistic calculation of the generalized dimensions of
the solar wind flow directly from the cleaned experimen-
tal signal by using the Grassberger and Procaccia (1983)
method. The resulting spectrum of dimensions shows
the multifractal structure of the solar wind in the inner
heliosphere (Macek, 2002). The obtained multifractal
spectrum is consistent with that for the multifractal
measure on the self-similar weighted Cantor set. In this
paper we demonstrate the influence of noise on these re-
sults and show that noise can efficiently be reduced by a
singular-value decomposition filter, which is sufficient to
calculate the generalized dimensions of the solar wind
attractor. The obtained value of the degree of multifrac-
tality is discussed in the context of the p-model of turbu-
lence cascade (e.g., Meneveau and Sreenivasan, 1987).

2. Data

We analyse the Helios 2 data using plasma parame-
ters measured in situ in the inner heliosphere (Schwenn,
1990). The radial velocity component of the plasma
flow, v, has been investigated by Macek (1998) and Ma-
cek and Redaelli (2000). However, it is known that var-
ious disturbances are superimposed on the overall
structure of the solar wind, including mainly Alfvén
waves, which move away from the Sun. Therefore, in
this paper we take also into account Alfvénic fluctua-
tions of the flow. Namely, in this paper we analyse the
radial component of one of the Elsdsser variables,
x = zy, representing Alfvénic fluctuations propagating
radially outward from the Sun. We have z; = v+ v
for the unperturbed magnetic field B, pointing to the
Sun and zy =v — vs for By pointing away from the
Sun, where vy = B/(,uop)l/ 2 is the Alfvénic velocity cal-
culated from the experimental data: the radial compo-
nent of the magnetic field of the plasma B and the
mass density p (go is the permeability of free space).

We have selected a time interval observed by the Helios
2 spacecraft in 1977 from 116:00 to 121:21 (day:hour) at
distances 0.30-0.34 AU from the Sun. These raw data of
v and vs, N =10,644 points, with sampling time of
At =40.5 s, are shown in Fig. 1 (a).

As in Macek (2002), slow trends 342.534 — 0.0495¢ —
0.0007¢%, and 84.31 — 3.175¢ + 0.01736¢* (with ¢ being a
time of a sample in hours) were subtracted from the ori-
ginal data u(t;), and va(t;), correspondingly, where these
values are given in km s and i=1,...,N. The data
with the initial several-percent noise level were (eight-
fold) smoothed (replacing each data point with the aver-
age of itself and its two nearest neighbours). Next, the
data have been filtered using a powerful method of sin-
gular system (singular-value decomposition or principal
component) analysis described by Albano et al. (1988).
Basically, noise prevents any eigenvalue or principal
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Fig. 1. (a) The raw data of the radial flow velocity with Alfvénic
velocity, v and va, observed by the Helios 2 spacecraft in 1977 from
116:00 to 121:21 (day:hour) at distance 0.3 AU from the Sun, (b) the
radial component of the Elsédsser variable z, = v 4 va for B, pointing
to/away from the Sun for the detrended and filtered data using
singular-value decomposition with the five largest eigenvalues.



W.M. Macek et al. | Advances in Space Research 37 (2006) 461-466 463

component from vanishing. Hence by limiting the num-
ber of basic eigenvectors, by taking only those corre-
sponding to some large eigenvalues, a substantial
amount of the inherent noise of the experimental data
is removed. As argued by Macek (1998) we use five prin-
cipal eigenvalues. The detrended and filtered data for
the radial component of the FElsédsser variable z; are
shown in Fig. 1(b). Certainly, this linear filtering re-
moves considerable amount of noise, leaving only few
percents. The nonlinear filtering, which allows calcula-
tion of the entropy, has been discussed by Macek and
Redaelli (2000). It has been shown that after the nonlin-
ear Schreiber filter the calculated dimension has been
somewhat reduced. In this paper, we focus on the calcu-
lations of dimensions. Therefore, we use moving average
and singular-value decomposition filtering (cf. Macek,
1998).

Table 1 summarizes selected calculated characteristics
of the detrended data cleaned by using the singular-va-
lue decomposition filter, see also (Macek, 2002). The
probability distributions are clearly non-Gaussian (cf.
Marsch and Tu, 1994). We have a large skewness of
~0.57 (as compared with its normal standard deviation
0.04) and a large kurtosis of 0.66 (the latter was small
for the analysis with no magnetic field) (cf. Macek,
1998). We have also estimated the Lempel-Ziv measure
of complexity, relative to white noise (Kaspar and
Schuster, 1987). The calculated value ~0.11 is even
smaller than in (Macek, 1998) (=0.20); maximal com-
plexity, or randomness, would have a value of 1.0, while
a value of zero denotes perfect deterministic nonlinear
predictability.

For a given time series the values are normalized to
the unit interval, dividing by the maximal value. As
shown in Fig. 2 the normalized autocorrelation function
for detrended and filtered data displays important oscil-
lations that reveal aperiodic behaviour of the flow of the
solar wind. In particular, the autocorrelation first fells
steeply to a value of 1 — 1/e in less than half an hour
(36At) then decreases nearly linearly, reaching a value
of 1/2 at 3/4 h, and a value of 1/e at the autocorrelation
time 7, =122At=137h, ((x(O)x(1 + 1)) — (x(1)Y))/
0% = /e, with average velocity (x) =1.528 kms~! and
standard deviation ¢ = 35.33 km s, (cf. Macek, 1998,
Fig. 2 (b)) (see also Table 1). Obviously, for an ideally
periodic system the optimum time delay for attractor

Table 1

Characteristics of the solar wind filtered data, z

Skewness, k3 0.57
Kurtosis, 4 0.66
Relative complexity 0.11
Autocorrelation time, ¢, 49%10° s
Capacity dimension, Dy 3.5
Correlation dimension, D,* 3.1

* The average slope for 6 < m < 10 is taken as D,.

Detrended and smoothed data
1.0 T T T T T

Autocorrelation

_05 I L L L 1 1

0 10 20 30 40 50 60
Time Lag (hours)

Fig. 2. The normalized autocorrelation function as a function of the
time lag for the detrended and filtered data.

reconstruction would be one-quarter of the natural orbi-
tal period, i. e., the first zero of the autocorrelation func-
tion. The value of the autocorrelation time is only
somewhat smaller than 7, = 310A7 = 3.5 h, the first ac-
tual zero of the autocorrelation function. Therefore,
for our aperiodic system we choose a time delay equal
to the autocorrelation time ¢,, i.e., T = 122A¢. This
makes certain that x(¢) and x(z + t) are at least linearly
time independent (e.g., Ott, 1993).

3. Generalized dimensions

Using our time series of equally spaced, detrended
and cleaned data, we construct a large number of vec-
tors X(t;) = [x(¢,),x(t; + 1), ...,x(¢; + (m — 1)r)] in the
embedding phase space of dimension m, where
i=1,...,nwithn=N — (m — 1)1. Then, we divide this
space into a large number M(r) of equal hypercubes of
size r which cover the presumed attractor, where r is dis-
tance between normalized vectors. If p; is the probability
measure that a point from a time series falls in a typical
jth hypercube, using the g-order function [,(r) =
>.(p)?, j=1,...,M, the g-order generalized dimension
is given by Hentschel and Procaccia (1983), Halsey et al.
(1986) and Ott (1993)

1 .. Inl,(r)

Dy = = lim = (n)

We see from Eq. (1) that the larger ¢ is, the more
strongly are the higher probability cubes (visited more
frequently by a trajectory) weighted in the sum for
I,(r). Intuitively, the generalized dimensions quantify
multifractality. Namely, if different parts of the phase
space of the dynamical system are visited with different
probability, then D, is a nonconstant function of g. Only
if ¢ =0, all the cubes are counted equally, Iy = M, and
we recover the box-counting dimension, Dy.
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Writing 1,(r) = Epj(pj)q_1 as a weighted average
((pj)qfl), one can associate bulk with the generalized

average probability per hypercube u = q’{/((pj)q*l%

and identify D, as a scaling of bulk with size, p oc 7.
Since the data cannot constrain well the capacity dimen-
sion Dy, we look for higher-order dimensions, which
quantify the multifractality of the probability measure
on the attractor. For example, the limit ¢ — 1 leads to
a geometrical average (the information dimension).
For ¢ =2 the generalized average is the ordinary arith-
metic average (the standard correlation dimension),
and for ¢ = 3 it is a root-mean-square average. In prac-
tice, for a given m and r,

P D 0= [ X() = X(0) ) @

with 0(x) being the unit step function, and n. = 2 is the
Theiler’s (1986) correction. Finally, I,(r) is taken to be
equal to the generalized g-point correlation sum (Grass-
berger and Procaccia, 1983)

1 Nref

> o) (3)

where n.. = 5000 is the number of reference vectors. For
large dimensions m and small distances r in the scaling
region it can be argued that C,(m,r) o< #4~DP: where
D, is an approximation of the ideal limit » — 0 in Eq.
(1) for a given ¢ (Grassberger and Procaccia, 1983).

4. Results and discussion

First, we calculate the natural logarithm of the stan-
dard (¢ = 2) correlation sum C,,,(r) = Cy(m,r) versus Inr
(normalized) for various embedding dimensions: m = 4
(dotted curve), m =35 (diamonds), m =6 (triangles),
m =" (squares), m =8 (crosses), m =9 (pulses), and
m =10 (stars) signs. The slopes D, (r) =d[ln C,(r))/
d(Inr) in the scaling region of r should provide the cor-
related dimension. The results obtained using the mov-
ing average and singular-value decomposition linear
filters are presented in Fig. 3, while those obtained using
the nonlinear Schreiber filters have been discussed by
Macek (1998) and Macek and Redaelli (2000). Since
the correlation sum is simply an arithmetic average over
the numbers of neighbours, this can yield meaningful re-
sults for the dimension even when the number of neigh-
bours available for some reference points is limited in
most real dynamical systems. If the D-dimensional
attractor exists, we expect a plateau of the slopes for
m = D and in the worst case for m > 2D. For m large
enough an average slope in the scaling region indicates
a proper correlation dimension D,. We have a clear pla-
teau which appears already for m = 4 (dotted curve) and
m = 5. For higher dimensions, m > 8§, the plateau is still
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Fig. 3. The slopes D,,,(r) = d[In C,(r))/d(Inr) of the correlation sum
C,,(r) versus Inr (normalized) obtained for detrended and filtered data
are shown for various embedding dimensions .

present but more smeared out by the statistical fluctua-
tions at small . In our case of the singular-value decom-
position filter the slope of the calculated correlation sum
saturates for m > 5, with an average for 6 < m < 10 of
D> =3.134+0.07 (cf. Macek, 1998); this is consistent
with the attractor of the low-dimension.

Second, the generalized dimensions D, in Eq. (1) as a
function of ¢ are shown in Fig. 4. In spite of large statis-
tical errors the multifractal character of the measure can
still be discerned. Therefore, one can say that the spec-
trum of dimensions shows the multifractal structure of

Generalized dimensions
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Fig. 4. The generalized dimensions D, in Eq. (1) as a function of ¢.
The correlation dimension is D, = 3.1 4 0.1, see Table 1. The values of
D, + 3 are calculated analytically for the weighted Cantor set with
p =0.09 (dashed-dotted).
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the slow solar wind in the inner heliosphere. For com-
parison, an extremely simple example of the multifractal
system is the weighted Cantor set, where the probability
of visiting one-third segment is p, say p < 1/2, and the
probability of visiting the removed middle segment is
zero, so that the probability of visiting the remaining
one-third segment is 1—p. In this case the results can
be obtained analytically; for any ¢ in Eq. (1) one has

(1 = q)Dy = logs[p” + (1 - p)’]. (4)

The difference of the maximum and minimum dimen-
sions associated with the least-dense and most-dense
points on the attractor, correspondingly, is D_,,—D., =
logs(1/p—1) and in the limit p — 0 this difference rises to
infinity. Hence, the parameter p can be regarded as a de-
gree of multifractality. For illustration the results of
D, + 3 calculated for p = 0.09 in Eq. (4) are also shown
in Fig. 4 by a dashed-dotted line. We see that the multi-
fractal spectrum of the solar wind is roughly consistent
with that for the multifractal measure on the self-similar
weighted Cantor set, with a single weighting parameter
p. Admittedly, this is a statistical model with as yet
unknown connection with the specific dynamics of the
solar wind. The obtained value of the parameter p
merely demonstrates that some cubes that cover the
attractor of our dynamical system are visited one order
of magnitudes more frequently than some other cubes,
as is illustrated in our previous paper, see Fig. 5 of Ma-
cek (1998).

Naturally, the value of parameter p (within the factor
of }g%) is related to the usual models, which starting
from Richardson’s version of turbulence, try to recover
the observed scaling exponents, which is based on the
so-called p-model of turbulence (e.g., Meneveau and
Sreenivasan, 1987). The value of p = 0.1 obtained here
is roughly consistent with the fitted value in the litera-
ture both for laboratory and the solar wind turbulence,
which is in the range 0.13 < p < 0.3 (e.g., Burlaga, 1991;
Carbone, 1993; Carbone and Bruno, 1996; Marsch
et al., 1996). One should only bear in mind that here
we take probability measure directly on the solar wind
attractor, which quantifies multifractal nonuniformity
of visiting various parts of the attractor in the phase
space, while the usual p-model is related to the solar
wind turbulence cascade for the dissipation rate, which
resides in the physical space.

We also estimate the Kolmogorov correlation entro-
py, K>, and the largest positive Lyapunov exponent,
Amax- The vertical spacings between the parallel lines in
Fig. 2 of (Macek, 2002) averaged in the saturation re-
gion 8 < m < 10 are taken as K, yielding the value of
~0.1 (per delay time 7). Using the algorithm by Kantz
(1994) and nonlinear noise reduction, one obtains the
magnitude of A, ~ 0.1 in the same units as for K,
(base e). In general, the entropy K, is at most the sum
of the positive Lyapunov exponents »_ 4 (e.g., Ott,

1993). The value of the Lyapunov exponent is consistent
with the Kolmogorov (¢ = 2) entropy, which should be
its lower bound: K, < > A; (positive). The time over
which the meaningful prediction of the behavior of the
system is possible is roughly ~1/4.« (e.g., Ott, 1993).
Hence the predictability of the system is limited to
hours.

The obtained measures of the attractor have been
subjected to the surrogate data test (Theiler et al.,
1992). As has been demonstrated in Fig. 8 of Macek
(1998), if the original data are indeed deterministic,
analysis of these surrogate data will provide values that
are statistically distinct from those derived for the origi-
nal data, see also Table 1. In particular, the slope of the
correlation sum increases with m (no saturation), and
the Lempel-Ziv complexity calculated for shuffled-data
becomes clearly 1.0, as it should be for a purely stochas-
tic system. Again, we have found that the solar wind
data are sensitive to this test.

5. Conclusions

In conclusion, we have shown that the singular-value
decomposition filter removes some amount of noise,
which is sufficient to calculate the generalized dimen-
sions of the solar wind attractor. The obtained multi-
fractal spectrum is consistent with that for the
multifractal measure on the self-similar weighted Cantor
set with a degree of multifractality of p ~ 10~!. The ob-
tained characteristics of the attractor are significantly
different from those of the surrogate data. Thus these re-
sults show multifractal structure of the solar wind in the
inner heliosphere. Hence we suggest that there exists an
inertial manifold for the solar wind, in which the system
has multifractal structure, and where noise is certainly
not dominant. The multifractal structure, convected by
the wind, might probably be related to the complex
topology shown by the magnetic field at the source re-
gions of the solar wind.
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