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Abstract: We develop the theory of line preserving flows 
and the magnetic reconnection using the Euler potentials 
formalism. In addition to our recently proposed model, we 
formulate new equations describing the time evolution of 
the Euler potentials in the line preserving regime. We also 
look at a special case of the flows represented by the ideal 
plasma flows. We consider the magnetic reconnection as a 
breakage of the line preservation regime. Because general 
solutions of the obtained dynamics equations do not have 
their closed-form expressions, we provide two different 
approaches to the possible solutions, in particular, a lin-
ear approximation and a solution by finding a Lagrangian 
and a Hamiltonian that generate the dynamics equations. 
We also provide some simple examples of the physical 
interpretation of the solutions obtained.

Keywords: Euler Potentials; Field Line Flows; Magnetic 
Reconnection; Magnetohydrodynamics; Plasma Physics.
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1  Introduction
One of the very important and still not fully understood 
processes appearing in different fields of physics is the 
process of magnetic reconnection. In recent days, two 
methods with different mathematical tools have been 
used to study the processes related to the reconnection. 
The first, so-called, non-null (or finite-B) reconnection 
takes place in the absence of magnetic nulls or any sin-
gularities of the magnetic field (see, e.g. [1]). Whereas the 
second, zero-B reconnection is a regime of magnetic nulls, 
separator lines, and similar structures (see, e.g. [2]).

Following Axford’s work on the non-null reconnec-
tion [3], Schindler, Hesse, and Birn presented a concept 
of the general magnetic reconnection [4]. They used this 
idea to describe the non-null reconnection using the Euler 
potentials representation of magnetic fields [5].

We adopt here this concept and consider only the non-
null magnetic reconnection. As a reconnection, we regard 
a process in which, during a plasma flow, the magnetic 
connection of plasma elements breaks down.

In the vector analysis, we can distinguish a motion 
during which every point starting on a given field line 
remains on the same line. It is called a line preserving 
motion, and in the case of the magnetic field B, it can be 
described by the following equation:

 
( ) 0,lt

 ∂× − ∇ × × = ∂ 

BB U B
 

(1)

where Ul(r, t) is a velocity field in a point r at a time t (see, 
e.g. [6]). The special case of the line preserving motion is a 
flux preserving motion. In this case, any loop moving with 
the velocity Uf(r, t) preserves field’s flux through the loop. 
This type of motion in the case of the magnetic field B is 
described by the following equation:

 
( ) 0ft

∂ − ∇ × × =
∂
B U B

 
(2)

(see, e.g. [6]).
If we find the actual plasma flow V(r, t) satisfying (1) 

or (2), i.e. if V(r, t) = Ul(r, t) or V(r, t) = Uf(r, t), we say that 
the flow V(r, t) is line or flux preserving, respectively. 
We see that any flux preserving flow is always line pre-
serving, but there are line preserving flows that do not 
preserve field’s flux. Note that conducting fluids in the 
ideal plasma model are flux preserving (see, e.g. [5] or 
[7]). In our approach, the breakage of the flux preserv-
ing regime is not enough for the magnetic reconnection 
to appear. Therefore, we will say that the reconnection 
of the magnetic field B occurs if (1) is not satisfied for 
a given plasma flow V = Ul, i.e. if the line preserving 
regime is broken.

We do not consider here the zero-B reconnection. It 
can be described by the magnetic merging concept (see 
[8, 9]) that, as shown by Hesse and Schindler [5], however, 
fails in the description of the finite-B (i.e. B ≠ 0) reconnec-
tion. Furthermore, (1), which is the basis of our concept, 
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in the case of zero-B reconnection (i.e. for B = 0), becomes 
just an identity. It does not contribute to our considera-
tions besides just resembling the trivial academic fact that 
any two plasma elements lying on the magnetic null point 
are always magnetically connected by the point. There-
fore, in this article, we inspect only the finite-B reconnec-
tion processes.

The theory of magnetic reconnection considered 
herein is based on the magnetohydrodynamics (MHD) 
theory. The proper application of MHD imposes several 
restrictions on the considered plasma. In particular, those 
limitations are the demand of the particle distribution to 
be close to the Maxwellian distribution; the requirement 
of length and time scales to be much greater than gyro-
radius and gyration time of plasma particles, respec-
tively. On the other hand, collisionless systems capturing 
kinetic effects of the plasma are accurately described 
by the theory based on Vlasov’s equation. Nonetheless, 
the convenient and simple mathematical formulation of 
MHD, as opposed to the kinetic approach, is the cause of 
the usage of MHD description in multitude instances of 
collisionless plasmas, especially in space and astrophysi-
cal plasmas. It can be justified, because even though in 
collisionless systems particles should move freely, they 
are still bound by their gyro-motion and unable to travel 
large distances perpendicularly to the magnetic field. 
Moreover, they are also prevented from travelling large 
distances along the magnetic field, because of different 
wave−particle interactions that usually arise in the actual 
plasmas. Apparently, MHD can describe, at least in a 
qualitative fashion, the bulk plasma flows on large scales, 
plasmas density, etc. Indeed, multiple studies show that 
observed phenomena can be accurately described using 
MHD, even though MHD limitations are not strictly met 
(e.g. for flux rope reconnection in solar corona, see 
[10]). A broader discussion on the applicability of MHD 
description to the actual plasmas can be found in a book 
by Priest and Forbes [11].

We use the Euler potentials representation to describe 
a magnetic field. For a more in-depth study on the Euler 
potentials, we refer to the paper by Stern [12]. In brief, we 
note that at least locally any divergence-free vector can be 
represented as a cross product of two gradients of scalar 
functions. For the magnetic field B, we have

 ,α β= ∇ × ∇B  (3)

where α and β are functions of coordinates x, y, and z. The 
magnetic vector potential A of the field B for B = ∇ × A is 
then

 .α β= ∇A  (4)

Thus, geometrically field lines of B are represented by 
the intersection lines of two surface families of α = const. 
and β = const.

Moreover, a choice of the potentials pair α and β is not 
unique, and so another potentials pair, e.g. g(α, β) and 
h(α, β), may represent the same magnetic field line if only

 

( , ) 1.
( , )

g h
α β

∂ =
∂  

(5)

It is always possible to derive at least locally a set of 
the potentials to represent the field B provided that B ≠ 0 
(see [13]). Moreover, we can choose at least locally a cur-
vilinear coordinate system (α, β, s) for the given α and β 
families, where s is a function of x, y, and z that represents 
an arc length on the magnetic field line.

Despite all the limitations imposed by the application 
of the Euler potentials, their use is still viable. Signifi-
cant results of this method can be recently found across 
different areas of physics from classical fluid dynam-
ics (see, e.g. [14]), plasma physics (see, e.g. [15]), and 
the astrophysical simulations (see, e.g. [16]). Moreover, 
certain magnetic topologies may be described by the Euler 
potentials very conveniently. For instance, in spherical 
 coordinates (r,  θ,  φ), a magnetic field formed by a mag-
netic dipole may be described by the Euler potentials pair 
α = α0(sin2θ/r) and β = β0φ, where α0 and β0 are constants. 
It just illustrates the fact that the Euler potentials formal-
ism may simplify considerations of certain magnetic field 
systems or shed a new light on their properties.

Naturally, the Euler potentials are still used in the 
magnetic reconnection domain, and the theory is con-
tinually developed. The most remarkable recent works on 
the subject are a paper by Hesse et al. [17] that deals with 
the rate of magnetic reconnection, and a paper by Wendel 
et al. [18] in which the authors investigate the reconnec-
tion rate and provide a method of finding places of the 
reconnecting field.

Nevertheless, the magnetic reconnection theory 
itself is continually under study. In particular, one of the 
interesting recent approaches to the subject is to inspect 
instances where both types of the reconnection exist 
simultaneously − non-null and zero-B reconnection. 
The configurations that are analysed combine the quasi-
separatrix layer and the spine-fan reconnection (see, e.g. 
[19, 20]). For the review of MHD theories describing the 
magnetic reconnection that are currently under the most 
intense study, we refer to a paper by Low [21]. A review 
of recent advances in the magnetic reconnection theory 
inclined towards the kinetic approach can be found in a 
paper by Treumann and Baumjohann [22].

Authenticated | pfigura@cbk.waw.pl author's copy
Download Date | 8/10/15 10:44 PM



P. Figura and W.M. Macek: Dynamics of Line Preserving Field Line Motions      645

2  Dynamics Equations
Properties of the magnetic field B, satisfying (3), may be 
studied by inspecting properties of the Euler potentials α 
and β. Hence, dynamics of the Euler potentials determine 
dynamics of the magnetic field. Therefore, to develop the 
theory and acquire more insight into the magnetic recon-
nection, we examine here dynamics of the Euler poten-
tials in the line preserving regime.

In the paper by Hesse and Schindler [5], the authors 
have obtained equations describing the time evolution of 
the Euler potentials related with the magnetic reconnec-
tion (cf. (23) from [5]). Their derivation is based on the 
study of Faraday’s law and Ohm’s law, and application 
of the Euler potentials formalism. We would like to derive 
here analogous equations describing the dynamics of the 
Euler potentials, but in a more general way without such a 
close reference to the physical setting. We base our study 
purely on the vector analysis’ equation of the line preserv-
ing flows (cf. (1)). Thus, without the bonds of specific phys-
ical conditions, we obtain the dynamics equations that can 
be broadly used in any circumstances, provided that the 
basic vector analysis’ assumptions hold; naturally, includ-
ing the case of the non-null magnetic reconnection theory.

In the paper by Figura and Macek [23], we have derived 
equations for the line preserving field line motions of the 
magnetic field using the Euler potentials representation. 
We have obtained the following equation for the velocity 
field Ul

 
,

t t
α β

β α ζα β Λ
∂ ∂× = ∇ − ∇ − ∇ + ∇
∂ ∂

U B
 

(6)

where ζ and Λ are arbitrary functions of α and β, i.e. 
ζ = ζ(α, β) and Λ = Λ(α, β), and where index l in the veloc-
ity symbol will be omitted hereafter. Equation (6) is in fact 
the line preserving motion condition (cf. (1)) expressed 
in terms of the Euler potentials. Furthermore, the equa-
tion implies that any given line preserving flow U in a 
given magnetic field B can be described by appropriately 
chosen functions ζ and Λ. Admittedly, (6) does not allow 
us to determine U having known B or to determine B 
having known U. Actually, for the given magnetic field B, 
there might be many flows U that hold the line preserv-
ing  condition, or conversely, for the given flow U, there 
might be different fields B that hold the line preserving 
condition.

We further investigate (6) to obtain equations of 
motion for the Euler potentials α and β in the line preserv-
ing regime. First, we consider the left hand side of (6), 
i.e. (U × B). In the adopted Euler potentials representa-
tion, the parallel to B component of U remains undefined; 

therefore, for simplicity, we set it equal to 0 (see, e.g. [5] or 
[7]). Taking a right-hand-side dot product of the left hand 
side of (6) with (B × ∇α), we get

 
2

( ) ( ) ( )( ) ( )( )
| | ( ),

α α α

α

× ⋅ × ∇ = ⋅ ⋅∇ − ⋅ ⋅∇
= − ⋅∇

U B B U B B B B U
B U

 
(7)

where (U · B) = 0 for a flow perpendicular to B. Then, we 
consider the right hand side of (6), and we also take a 
right-hand-side dot product of it with (B × ∇α). Now we get

 

( )

( ) ( )

( ) ( ).

t t

t t

α β
β α ζα β Λ α

α β
β α α α

ζα β α Λ α

 ∂ ∂
∇ − ∇ − ∇ + ∇ ⋅ × ∇  ∂ ∂

∂ ∂
= ∇ ⋅ × ∇ − ∇ ⋅ × ∇

∂ ∂
− ∇ ⋅ × ∇ + ∇ ⋅ × ∇

B

B B

B B  

(8)

From the vector calculus, we have

2

2

2

( ) ( ) | | ,

( ) ( ) 0,

( ) ( ) | | ,

( ) ( )

( ) | | ,

t t t

t t

α α α
β α α β

β β
α α α α

ζα β α ζα α β ζα

Λ Λ
Λ α α Λ α α β

α β

Λ Λ
α β

β β

∂ ∂ ∂∇ ⋅ × ∇ = ⋅ ∇ × ∇ =
∂ ∂ ∂
∂ ∂∇ ⋅ × ∇ = ⋅ ∇ × ∇ =
∂ ∂

∇ ⋅ × ∇ = ⋅ ∇ × ∇ =

  ∂ ∂∇ ⋅ × ∇ = ⋅ ∇ × ∇ = ⋅ ∇ × ∇ + ∇  ∂ ∂  
∂ ∂= ⋅ ∇ × ∇ =
∂ ∂

B B B

B B

B B B

B B B

B B

so combining (7) and (8), we obtain

 

2 2 2 2| | ( ) | | | | | | ,
t
α Λ

α ζα
β

∂ ∂− ⋅∇ = − +
∂ ∂

B U B B B
 

(9)

which is

 
.

t
α Λ

α ζα
β

∂ ∂
⋅∇ + = − +

∂ ∂
U

 
(10)

Thus, we have derived the equation for a total time 
derivative of α(x, y, z):

 

d .
dt
α Λ

ζα
β

∂
= − +

∂  
(11)

Following the same procedure, but considering the 
dot product of (6) with (B × ∇β), we obtain the equation 
for a total time derivative of β(x, y, z):

 

d .
dt
β Λ

α
∂=
∂  

(12)

Therefore, we obtain the system of equations describ-
ing the dynamics of the Euler potentials, and thus the 
dynamics of the magnetic field B, in the line preserving 
regime
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d
d .
d
d

a
t

t

α Λ
ζ

α
β Λ

α

∂
= − +

∂
∂=
∂  

(13)

The preceding system of equations has a nearly Ham-
iltonian structure. If it were strictly Hamiltonian, we would 
have the flux preserving field line dynamics (see [5]). We 
now consider what constraints are imposed on the arbi-
trary functions Λ and ζ in order to have the flux preserving 
flows, i.e. the ideal plasma. In the flux preserving regime, 
the dynamics of the Euler potentials have the form

 

d
d .
d
d

G
t

G
t

α

β
β

α

∂= −
∂

∂
=

∂  

(14)

where G is an arbitrary function of α and β, i.e. 
G = G(α, β). Therefore, Λ and ζ should satisfy the system 
of equations

 

.

G

G

Λ
ζα

β β
Λ

α α

∂ ∂− + = −
∂ ∂

∂ ∂
=

∂ ∂  

(15)

Solving the system of (15), we find general constraints 
on Λ and ζ, namely

 

( )d
,( )

G g k
g

Λ β β

β
ζ

α

= + +

=

∫

 

(16)

where g(β) is an arbitrary function of β, and k is a constant.
Substituting Λ and ζ from (16) into (13), we obtain 

the flux preserving regime dynamics of (14). Also, the 
condition for line preserving flows (1) reduces to the flux 
preserving flows condition (2) (see [23]). Moreover, (6) 
describing the line preserving flows becomes

 
,G

t t
α β

β α
∂ ∂× = ∇ − ∇ + ∇
∂ ∂

U B
 

(17)

which is an equation for the case of the flux preserving 
flows obtained by Vasyliunas (see [7]). Therefore, for ideal 
plasma flows Λ and ζ must satisfy (16).

3  Solutions of Dynamics Equations
In the line preserving regime, closed-form solutions of 
the Euler potentials dynamics system of (13) do not exist. 
We would like to present here two different approaches to 
finding special case solutions, which may be interesting 

from a physical point of view. Although all of them will 
require some additional assumptions, we will try to make 
them physically reasonable.

3.1  Linear Approximation Solution

In the first approach, we expand functions Λ and ζ in the 
neighbourhood of a reference point (α0, β0, t0) into the 
Taylor series. Then, we truncate the series at the first two 
terms. Substituting functions Λ and ζ in this form into (13) 
and leaving only up to linear terms, we obtain

 

d
d ,
d
d

K C
t

K
t

β

α

α
α

β

= − +

=
 

(18)

where K
α
, K

β
, and C are the following constants:

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0

, , 

, , 

0 0 0 0 0 0
, , , , , , 

,

,

( , , ) .

t

t

t t t

K

K

C t t
t

α

α β

β

α β

α β α β α β

Λ

α

Λ

β

ζ ζ ζ
ζ α β α β

α β

∂
=

∂

∂=
∂

∂ ∂ ∂
= − − −

∂ ∂ ∂

Solving system of (18) yields

 

( ) ,
( )

Ct
K

t D e
C

t K t D

β

α

α β

α

β

= +

= +
 

(19)

where D
α
 and D

β
 are constants.

We see that one of the Euler potentials, α, has an 
exponential behaviour in time, while the second, β, has a 
linear behaviour in time. It can be shown that, following 
the same procedure but in the case of the flux preserving 
flows, both potentials depend on time linearly. It means 
that, under the given assumptions, the line preserving 
flows have stronger time dependence than ideal plasma 
flows. We also note that beside some trivial cases like, e.g. 
Λ = 0, the solution is not stationary and does not converge 
to any constant.

The considered approximation may have its direct 
physical interpretation as a simple non-uniformly acceler-
ated plane flow in a magnetic field. Considering (10) and 
its analogue for β, we have

 
,K C

t β

α
α α

∂⋅∇ + = − +
∂

U
 

(20)
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.K

t α

β
β

∂⋅∇ + =
∂

U
 

(21)

Supposing now for simplicity a steady and uniform 
magnetic field B = [Bx, 0, 0], we see that ∂α/∂t = 0 and 
∂β/∂t = 0, so we obtain

 ,K C
β

α α⋅∇ = − +U  (22)

 .K
α

β⋅∇ =U  (23)

We may set as well a transformation between (α, β, s) 
and (x, y, z) coordinate systems, which we choose to have 
the same origin, as

 

,
ay
bz

s rx

α

β

 =
 =
 =  

(24)

where a, b, and r are constants. It leads us to the equations 
for components of the velocity U

 
,y

K
u yC

a
β= −

 
(25)

 
,z

K
u

b
α=

 
(26)

where component ux, which is a velocity component along 
magnetic field lines, remains undefined (cf. Section 2). 
Setting constants appropriately and expressing the veloc-
ity as a function of time, we finally obtain

 [ 0,  exp( ), 0 ],DC Ct=U  (27)

where D is a constant. Therefore, supposing steady and 
uniform magnetic field B, we have that the considered 
linear approximation is a strict solution for the exponen-
tially accelerated flows of type (27). Moreover, the approx-
imation of the system of (13) may be used to describe other 
flows as long as they are similar to (27) possibly in spe-
cific regions. In particular, convenient conditions might 
appear on the early stages of the coronal magnetic loops 
expansion (see, e.g. [24] or [25]) or after applying the mag-
netic field to the case of an accelerated jet in a crossflow 
(see, e.g. [26] or [27]).

3.2  Series Expansion Separable Solution

In this approach, our goal is to find a Lagrangian and 
then a Hamiltonian that generate the dynamics system of 
(13). We suppose here that ζ = const. and that Λ is separa-
ble and can be expressed as a product of three functions 
depending on a single variable only, namely

 ( , , ) ( ) ( ) ( ),t k l r tΛ α β α β=  (28)

where functions k(α) and l(β) have a form of certain series 
as given in the following.

Because of the non-conservative friction-like nature 
of the system of (13), they cannot be obtained from a 
 Lagrangian with only integer derivatives (see, e.g. [28]). 
However, with fractional mechanics using fractional 
derivatives, we can formulate a Lagrangian that will allow 
us to derive the system of (13).

The fractional calculus is not commonly known 
amongst mathematicians and physicists. A proper review 
on the topic can be found in, e.g. [29] or an in-depth study 
in, e.g. [30], whereas fractional mechanics are described 
in, e.g. [28]. We will present here only a short summary on 
the subject.

We use Oldham and Spanier [30] notation here. 
 Following Riewe [28], we define a fractional integral of 
order n by

 
0

1

0

d ( ) 1 ( ) ( )d
( )d( )

t

t

f t t t f t t
t t

ν
ν

ν Γ ν

−
−

−
= − ′ ′ ′

− ∫
 

(29)

for Re(n) > 0, where Γ is the gamma special function. 
Now provided that n is the smallest integer greater than 
Re(u), for n = n − u, we define a fractional derivative of 
order u by

 0 0

d ( ) d d ( ) .
d( ) d d( )

u n

u n

f t f t
t t t t t

ν

ν

−

−=
− −

 
(30)

We see that if u is an integer, we obtain an ordinary 
derivative. Moreover, if f is suitably differintegrable then 
the composition rule

 0 0 0

d d d( ) ( )
d( ) d( ) d( )

f t f t
t t t t t t

µ νµ ν

µ ν µ ν

+

+=
− − −

 
(31)

is satisfied provided that n  ≤  0 or μn  ≥  0 (see [30]).
We adopt the fractional mechanics following Riewe 

(see [28, 29]). The Lagrangian is a function of time t, 
 coordinates xj (where j = 1, …, J), and time derivatives 
of xj of any positive real order. If the Lagrangian is a 
 function of N different derivatives of xj, then by s(n) (where 
n = 1,  …,  N) we will denote the order of the n-th deriva-
tive of xj. We define s(0) = 0 to describe not derived coordi-
nate, i.e. xj. For example, if a given Lagrangian depends on 
time derivatives of xj of order 1/2 and 5, then N = 2 and s for 
 coordinate xj will have following values s(0) = 0, s(1) = 1/2, 
and s(2) = 5.

In the fractional calculus, the application of the 
 variational principle over time t∈[ta, tb] to the integral 
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d ,b

a

t

t
J L t= ∫  where L is a Lagrangian, yields the  dependence 
of the Lagrangian on two types of derivatives

 

( )

, ( ) , ( ), ( )

d
d( )b

s n
j

j s n j s n t s n
b

x
q q

t t
= =

−
 

(32)

and

 

( )

, ( ), ( )

d
d( )a

s n
j

j s n t s n
a

x
q

t t

′

′ ′
=

−
 

(33)

(see [29]). Euler−Lagrange equations for the Lagrangian L 
have the following form:

( )
( )

( )
0 , ( ), 

( )
( )

( )
0 , ( ), 

d( 1)
d( )

d( 1) 0.
d( )

b

a

s nN
s n

s n
n j s n ta

s nN
s n

s n
n j s n tb

L
qt t

L
qt t

=

′′
′

′
= ′

∂
−

∂−

∂
+ − =

∂−

∑

∑  (34)

Defining momenta for n = 0, …, N − 1

1
( 1) ( 1)

, ( ) , ( ), 
0

( 1) ( 1)

( 1) ( 1)
, ( 1), 

( 1)

d
d( )

b

b

N n
s k n s n

j s n j s n t
k

s k n s n

s k n s n
j s k n ta

p p

L
qt t

− −
+ + − +

=

+ + − +

+ + − +
+ +

= = −

 ∂×  
 ∂−  

∑

 
(35)

and for n = 0, …, N′ − 1

1
[ ( 1) ( 1)]

, ( ), 
0

( 1) ( 1)

( 1) ( 1)
, ( 1), 

( 1)

d ,
d( )

a

a

N n
s k n s n

j s n t
k

s k n s n

s k n s n
j s k n tb

p

L
qt t

− −′
− + + − +′ ′

′
=

+ + − +′ ′

+ + − +′ ′
+ +′

= −

 ∂×  
 ∂−  

∑

 
(36)

we have that Hamiltonian H has the form

, ( ), , ( 1), , ( ), , ( 1), 
1 1 1 1

.
b b a a

J JN N

j s n t j s n t j s n t j s n t
n j n j

H q p q p L
′

− −′ ′
= = = =

= + −∑∑ ∑∑  
(37)

For the simplicity of our study, we will consider 
Lagrangians depending on generalised coordinates of 
type (32) only. It is justified if we are considering a limiting 
case ta → tb for ta < tb, and thus, we can approximate all 
fractional derivatives by du/d(t − tb)u type derivatives (see 
[29]). Therefore, Euler−Lagrange (34) reduce to

 

( )
( )

( )
0 , ( )

d( 1) 0,
d( )

s nN
s n

s n
n j s na

L
qt t=

∂− =
∂−∑

 
(38)

and Hamiltonian (37) reduces to

 
, ( ) , ( 1)

1 1
.

N J

j s n j s n
n j

H q p L−
= =

= −∑∑
 

(39)

Having done this short summary, we consider now the 
following Lagrangian:

 

2 2 2
1 1
2 2

2 2 ,L i i Λ Λ
α β ζα α β

β α   
      

∂ ∂= + + − +
∂ ∂

 
(40)

where α(1/2) and β(1/2) are fractional time derivatives of order 
1/2 of α and β, respectively, and i is an  imaginary unit. In 
 generalised coordinates, we can express  Lagrangian (40) as

 

2 2 2
1 1 , 0 , 0 , 0, , , 0 , 02 2

2 2 ,L iq iq q q q
q qα α β

α β
β α

Λ Λ
ζ

∂ ∂= + + − +
∂ ∂

 
(41)

where q
α,s(n) and q

β, s(n) are time derivatives of α and β, 
respectively, of order s(n) as given in (32). In this particular 
case for the generalised coordinate q

α
, the function s has 

values s(0) = 0 and s(1) = 1/2, whereas for the coordinate q
β
 

the function s has similar values s(0) = 0 and s(1) = 1/2.
Making use of (31), one can obtain from Lagrangians 

with fractional derivatives the friction-like terms in equa-
tions of motion. In the considered case, we obtain the fol-
lowing Euler−Lagrange equations:

 

2 2

2

2 2

2

d 0
d .

d 0
d

t

t

α Λ Λ Λ
ζα β α

β α βα
β Λ Λ Λ

α β
α α ββ

∂ ∂ ∂− + − + =
∂ ∂ ∂∂
∂ ∂ ∂− + − =
∂ ∂ ∂∂  

(42)

To recover our dynamics system of (13), we see that the 
following equations must be satisfied:

 

2 2

2

2 2

2

0
.

0

Λ Λ
β α

α βα
Λ Λ

α β
α ββ

∂ ∂− =
∂ ∂∂

∂ ∂− =
∂ ∂∂  

(43)

From those constraints, we derive the form of series of 
functions k(α) and l(β) as mentioned in the beginning of 
Section 3.2. We see that (43) are satisfied only if functions 
k(α) and l(β) can be expressed as

 

4

0 2

3
4( ) ,

34 !
4

m m

m m

ac
k

m m

α Γ
α

Γ

∞

=

 
  

=
 

+  

∑

 

(44)

 

4

0 2

3
4( ) ,

34 !
4

m m

m m

bc
l

m m

β Γ
β

Γ

∞

=

 
  

=
 

+  

∑

 

(45)

where a, b, and c are constants, and Γ is the gamma func-
tion. Applying the d’Alembert’s convergence criterion, we 
see that series (44) and (45) are convergent.
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Therefore, if Λ is separable as in (28), where k(α) and 
l(β) are expressed as in (44) and (45), respectively, then 
Lagrangian (40) generates the line preserving dynamics 
as expressed in the system of (13).

Having Lagrangian (41), we see from (39) that under 
the given conditions, the Hamiltonian of the line preserv-
ing dynamics is as follows:

 

2 2 2
1 1 , 0 , 0 , 0, , 

,0 , 02 2

2 2 .H iq iq q q q
q qα α β

α β
β α

Λ Λ
ζ

∂ ∂= + − + −
∂ ∂

 
(46)

Hamilton’s canonical equations in the fractional  mechanics 
are

 

( 1) ( )
( 1) ( )

, ( )( 1) ( )
, ( )

d( 1) ,
d( )

s n s n
s n s n

j s ns n s n
j s n a

H p
q t t

+ −
+ −

+ −

∂ = −
∂ −

 
(47)

 
, ( 1)

, ( )

,j s n
j s n

H q
p +

∂ =
∂

 
(48)

 
.H L

t t
∂ ∂= −
∂ ∂  

(49)

In the case under study, (47) recover the system of 
(13), whereas the remaining canonical equations are just 
identities.

The considered Lagrangian in (40) is obviously not 
the only one that generates (13) for separable Λ and con-
stant ζ. In particular, if one specifies different forms of 
functions k(α) and l(β), then different Lagrangians will 
generate the system of (13).

The physical interpretation of the presented example 
is as follows. For the ease of the presentation, similarly to 
the example from Section 3.1, we will consider a flow in a 
given uniform time-independent magnetic field B = [Bx, 0, 
0]. Likewise, it will simplify the transformation between 
(x, y, z) and (α, β, s) coordinate systems that we set to have 
the same origin. Then, the transformation between coor-
dinate systems is described by

 

,
ay
bz

s rx

α

β

 =
 =
 =  

(50)

where a, b, and r are constants. We will search for the 
velocity field U = [ux, uy, uz] expressed in (x, y, z) coordinate 
system. As stated in Section 2, the velocity along the field 
B lines is undefined; thus, in the considered case, we can 
set ux = 0. The remaining components of U we will derive 
from (6).

The flow U is described by the Lagrangian (40) if ζ 
and Λ of the flow have the following forms:

 

const.
,

( ) ( ) ( )k l r t
ζ

Λ α β

=
=  

(51)

where k(α) and l(β) are

 

4

0 2

4

0 2

3
4( )

34 !
4

3
4( ) ,

34 !
4

m m
k

m m

m m
l

m m

D c
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D c
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α Γ
α

Γ

β Γ
β

Γ

∞

=

∞

=

 
  

=
 

+  
 
  

=
 

+  

∑

∑

 

(52)

with Dk, Dl, and c are constants. After the transformation 
to (x, y, z) coordinate system, (6) of the considered flow is

 

00 0
0 ( ) ( ) ( ) .

( ) ( )

x z

y

B u ay r t l bz k ay
y

u b
k ay l bz

z

ζ

          ∂ = − +     ∂   −     ∂ 
 ∂   

(53)

Therefore, the flow U has the following components:

 0,xu =  (54)

4 4

0 2

4 14

0 2

3
( ) 4

34 !
4

34
4 ,

34 !
4

m m m
k

y
m mx x

mm m
l
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D c a yab r tu y
B B

m m

D c b mz

m m

Γ
ζ

Γ

Γ

Γ

∞

=

−
∞

=

 
  

= −
 

+  
 
  

×
 

+  

∑

∑
 

(55)

 

4 14 4 4

0 02 2

3 34( ) 4 4 .
3 34 ! 4 !
4 4

mm m m m m
l k

z
m mm mx

D c b z D c a myr tu
B

m m m m

Γ Γ

Γ Γ

−
∞ ∞

= =

   
      

= ×
   

+ +      

∑ ∑

 (56)

Depending on the values of constants, different flows 
can be described by the Lagrangian (41). In Figure 1, 
there are presented two examples of the possible veloc-
ity vector fields of such flows in a stationary case, i.e. for 
r(t) = const. Both of them were generated using the same 
values of parameters except for the value of constant c, 
which was positive in the case of the flow from panel 1(a) 
and negative in the case of the flow from panel 1(b). As 
seen in Figure 1, significantly different flows can be gener-
ated − in the considered example a vortex-like flow (panel 
1(a)) or a diffusion-like outflow (panel 1(b)). Apparently, 
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this simple example shows the variety of the line preserv-
ing flows that can be generated by the same Lagrangian.

4  Conclusions
We have formulated here the dynamics of a magnetic 
field in the line preserving flows regime using the Euler 
potentials representation. In particular, not tied to any 
specific physical setting, but based on the vector analy-
sis, we have derived the system of equations describing 
the time dependence of the Euler potentials. As a special 
case, we have also described the dynamics of flux preserv-
ing motions that characterise the ideal plasma flows. Our 
novel formulation of the magnetic field dynamics as a 
nearly Hamiltonian system may be useful in studies on the 
non-null magnetic reconnection as well as other topics 
concerning the line preserving flows. For instance, it may 
streamline considerations of the magnetic fields that have 
a simple Euler potentials representation. Additionally, our 
formulation may be used to find constraints for the exist-
ence of the possible solutions. Likewise, it may be used in 
the reconnection instability analysis of the various flows 
in magnetic fields.

In our approach, we adopted a breakage of the line 
preservation regime as a non-null magnetic reconnec-
tion indicator. A similar concept and its considerations 
using the Euler potentials have been recently examined 

by, e.g. Nickeler and Fahr [31]. Our results might be useful 
in similar studies, but also in the modelling attempts of 
the subject. Moreover, even though the plasma setting is 
used, our considerations remain valid for any flows in 
other vector fields satisfying the same basic assumptions, 
i.e. zero divergence of the field and local applicability of 
the Euler potentials representation. Therefore, applica-
tions of the results are much wider than to the plasma 
physics only.

Because of the nonexistence of closed-form solutions 
in the line preserving regime, we have proposed two dif-
ferent approaches to finding special case solutions. The 
first of them was a simple solution by linearisation. It 
appeared that the solution may strictly describe expo-
nentially accelerated flows in a uniform, steady magnetic 
field. The second approach was to find a Lagrangian and 
a Hamiltonian for the line preserving flows dynamics. It 
proved to be possible for different parameters sets, and 
we have provided examples of two such diverse flows that 
can be generated by the same Lagrangian.

We think our studies may be interesting for a greater 
number of researchers, not only for the plasma physics 
specialists. In our opinion, further study of the presented 
model may be fruitful, especially in the magnetic recon-
nection domain.
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Figure 1: Examples of the velocity vector fields of flows described by the Lagrangian (41). The field B is perpendicular to the plane of flows. 
The parameters used: ζ = 1.5, r = 1, Bx = 1, a = 0.8, b = 0.8, c = 1.2 − panel (a) or c = −1.2 − panel (b), Dk = 0.5, and Dl = 0.5. For the clarity of the 
picture, the normalised natural logarithms of the vectors were plotted individually on each panel.
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