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We argue that dynamical behavior of space plasmas can often be approximately

described by low-dimensional chaotic attractors in the inertial manifold, which

is a subspace of a given system phase space. In fact, using nonlinear time-series
analysis based on the method of topological embedding, we have identified a

chaotic strange attractor in the solar wind data. In particular, we have shown

that the multifractal spectrum of the solar wind attractor is consistent with
that for the self-similar generalized weighted Cantor set with one probability

measure parameter of the chaotic attractor and one or possibly two scaling

parameters describing nonuniform compression in the phase space of the sys-
tem. The values of the parameters fitted demonstrate small dissipation of the

complex solar wind plasma and show that some parts of the attractor in phase

space are visited much more frequently than other parts.
To quantify the multifractality of space plasma turbulence, we have re-

cently considered the generalized two-scale weighted Cantor set also in the
context of solar wind intermittent turbulence. We investigate the resulting mul-

tifractal spectrum of generalized dimensions depending on parameters of the

new cascade model, especially for asymmetric scaling. In particular, we show
that intermittent pulses are stronger for the model with two different scaling

parameters; a much better agreement with the solar wind data is obtained,
especially for the negative index of the generalized dimensions.

Therefore we argue that there is a need to use a two-scale cascade model.

We hope that this generalized multifractal model will be a useful tool for anal-

ysis of intermittent turbulence in the Solar System plasma. We thus believe
that fractal analysis of chaotic phenomena in the complex space environment

could lead us to a deeper understanding of their nature, and maybe even to
predict their seemingly unpredictable behavior.
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1. Importance of Chaos and Multifractality

The nature of the fluctuations in solar wind plasma parameters is still not
sufficiently understood. The slow solar wind most likely originates from
nonlinear processes in the solar corona. However, it appears that a certain
kind of order does lie concealed within the irregular solar wind fluctuations,
which can be described using methods of nonlinear time series analysis,
based on fractal analysis and the theory of deterministic chaos. This involves
the notions of fractal and multifractal sets, which could presumably be
strange attractors in a certain state space of a given complex dynamical
system. By employing the so-called false-nearest-neighbors method, we have
argued that the deterministic component of solar wind plasma dynamics
should be low-dimensional.1

In fact, the results we have obtained using the method of topological em-
bedding indicate that the behavior of the solar wind can be approximately
described by a low-dimensional chaotic attractor in the inertial manifold,
which is a subspace of system phase space. A direct determination of a solar
wind attractor from the data is known to be a difficult problem. This chaotic
strange attractor has been identified in the solar wind data by Macek in [2]
and further examined in [3]. In particular, we have calculated the correla-
tion dimension of the reconstructed attractor in the solar wind2 and have
provided tests for this measure of complexity including statistical surrogate
data tests.4 Further, we have shown that the Kolmogorov entropy of the
attractor is positive and finite, as it holds for a chaotic system.3

We have also considered the spectrum of generalized dimensions Dq as
a function of a continuous index, −∞ < q < ∞, for the solar wind attrac-
tor, using a simple multifractal model with a measure of the self-similar
weighted Cantor set with one parameter describing uniform compression
and another parameter for the probability measure of the attractor of the
system. The spectrum is found to be consistent with the data, at least
for positive index q of the generalized dimensions Dq.5–9 However, the full
singularity spectrum is necessary to quantify the degree of multifractal-
ity. Notwithstanding of the well-known statistical problems with negative
q (see [7]) we have recently succeeded in estimating the entire spectrum
for solar wind attractor using a generalized weighted Cantor set with two
different scales describing nonuniform compression.10

The question of multifractality is also of great importance because it
allows us to investigate the nature of interplanetary hydromagnetic turbu-
lence in the solar wind e.g. [11,12]. Starting from Richardson’s version of
turbulence, many authors try to recover the observed scaling exponents,
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using some simple and more advanced models of turbulence describing dis-
tribution of the energy flux between cascading eddies at various scales. In
particular, the multifractal spectrum was investigated using Voyager (mag-
netic field) data in the outer heliosphere13,14 and using Helios (plasma)
data in the inner heliosphere.15 The multifractal scaling has also been in-
vestigated using Ulysses observations16,17 and with Advanced Composition
Explorer (ACE) and WIND data.18–20

Recently, in order to further quantify the multifractality, we have con-
sidered the generalized weighted Cantor set also in the context of turbu-
lence cascade.21 Therefore we have argued that there is, in fact, need to use
a two-scale cascade model. Here we investigate the resulting multifractal
singularity spectrum depending on two scaling parameters and one prob-
ability measure parameter, demonstrating that a much better agreement
has been obtained, especially for q < 0. We hope that this generalized new
asymmetric multifractal model could shed light on the nature of turbulence
and will be a useful tool for analysis of intermittent turbulence in various
environments.

2. Two-scale Cantor Set

A simple interesting example of mutifractals is the Cantor-set with two
scales l1+l2 ≤ l, as shown in Figure 1. At each step of construction we obtain
2n closed narrow segments of various widths and probabilities. The resulting
strange chaotic attractor for n → ∞ is the weighted two-scale Cantor set.
Even though one can find this generalized Cantor set in many classical
textbooks,22,23 it is still difficult to understand this strange attractor that
exhibits multifractality in various complex real systems, also in case of
intermittent turbulence.

According to a standard scenario, each of cascading eddies is break-
ing down into two new ones, but not necessarily equal and twice smaller.
In particular, space filling turbulence could be recovered for l1 + l2 = 1
(see [24]). In the inertial region of the system of size L, η � l � L = 1
(normalized), the energy is not allowed to be dissipated directly until the
Kolmogorov scale η is reached. However, in this range at each n-th step
of the binomial multiplicative process, the flux of kinetic energy density ε

transferred to smaller eddies (energy transfer rate) could be divided into
non equal fractions p and 1− p (see [21], Figure 1).
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Fig. 1. Two-scale Cantor set.

3. Solar Wind Data

We have already analyzed the Helios 2 data using plasma parameters mea-
sured in situ in the inner heliosphere25 for testing of the solar wind at-
tractor. The X-velocity (mainly radial) component of the plasma flow, vx,
has been already investigated by Macek2,5,6 and Macek and Redaelli.3 The
Alfvénic fluctuations with longer (two-days) samples have been studied by
Macek7,10 and Macek et al.8,9 To study the turbulence cascade, Macek and
Szczepaniak21 have selected four-day time intervals of vx samples in 1976
(solar minimum) for both slow and fast solar wind streams measured at
various distances from the Sun. In this paper we analyze time series of ve-
locities of the solar wind measured by ACE in the ecliptic plane near the
libration point L1, e.g., approximately at a distance of R = 1 AU from
the Sun. Here we have selected even longer (five-day) time intervals of vx
samples, each of 6750 data points, interpolated with sampling time of 64 s,
for both slow and fast solar wind streams during solar minimum (2006) and
maximum (2001).
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4. Methods of Data Analysis

4.1. Generalized Dimensions

The generalized dimensions are important characteristics of complex dy-
namical systems.26–29 Since these dimensions are related to frequencies with
which typical orbits in phase space visit different regions of the attractors,
they provide information about dynamics of the systems.23 More precisely,
one may distinguish a probability measure from its geometrical support,
which may or may not have fractal geometry. Then, if the measure has
different fractal dimensions on different parts of the support, the measure
is multifractal.30

Let us consider the generalized weighted Cantor set where the prob-
ability of visiting one segment of size l1 is p (say, p ≤ 1/2), and for the
remaining segment of size l2 is 1− p (see Figure 1). For any q one obtains
Dq = τ(q)/(q−1) by solving numerically the following transcendental equa-
tion23

pq

l
τ(q)
1

+
(1− p)q

l
τ(q)
2

= 1 (1)

4.2. Turbulence Scaling

In the inertial range the transfer rate of the energy flux ε(l) is widely
estimated by

ε(l) ∼
∣∣u(x+ l)− u(x)

∣∣3
l

, (2)

where u(x) and u(x+l) are velocity components parallel to the longitudinal
direction separated from a position x by a distance l. Therefore to each ith
eddy of size l in the turbulence cascade (i = 1, . . . , N = 2n) we associate a
probability measure defined by

pi(l) =
εi(l)∑N
i=1 εi(l)

(3)

This quantity can roughly be interpreted as a probability that the energy
flux is transferred to an eddy of size l = vswt. Here, for simplicity the third
moment of structure function of velocity fluctuations in Eq. (2) is used for
estimation of this measure.15

Similarly, we define a one parameter q family of (normalized) generalized
pseudoprobability measures31

µi(q, l) ≡
pqi (l)∑N
i=1 p

q
i (l)

(4)
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Now, with an associated fractal dimension index fi(q, l) ≡ logµi(q, l)/ log l
for a given q the multifractal singularity spectrum of dimensions is defined
directly as the averages taken with respect to the measure µ(q, l) in Eq. (4)
denoted from here on by 〈. . .〉

f(q) ≡ lim
l→0

N∑
i=1

µi(q, l) fi(q, l) = lim
l→0

〈
logµi(q, l)

〉
log(l)

(5)

and the corresponding average value of the singularity strength is given
by32

α(q) ≡ lim
l→0

N∑
i=1

µi(q, l) αi(l) = lim
l→0

〈
log pi(l)

〉
log(l)

(6)

One can easily verify that the multifractal singularity spectrum f(α) as a
function of α satisfies the following Legendre transformation29,32

α(q) =
dτ(q)

dq
, f(α) = qα(q)− τ(q). (7)

5. Results and Discussion

5.1. Dimensions for Solar Wind Attractor and Turbulence

Models

To estimate the generalized dimensions for the solar wind attractor we
should calculate for a given continuous index q and embedding dimension
m the so-called generalized correlation sum Cq,m(r) as a function of hyper-
spheres of radius r that cover the presumed attractor (see [10], Equation
1). This can roughly be interpreted as an average probability of finding q
vectors in embedding space separated by a distance smaller than r. For
large dimensions m and small distances r in the scaling region it can be
argued that Cq,m(r) ∝ rτ(q), where τ(q) is an approximation of the ideal
solution of Eq. (1).27 Hence, the slopes of the natural logarithm of Cq,m(r)
versus ln r (normalized) provides

Dq,m(r) =
1

q − 1
d
[
lnCq,m(r)

]
d(ln r)

(8)

If a plateau exists in a scaling region, rmin < r < rmax, which does not
depend on m for some m > m0, this plateau can be identified with the
requested generalized dimension. Finally, the average slope for 6 ≤ m ≤ 10
is taken as Dq.2,7–10 We have verified that for q > 0 the slopes do not
change substantially with the number of points used, providing that the
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dimension of the attractor is well below 2 log10N ≈ 9, e.g., for N = 26163
(see [33]). The results obtained using the moving average filter and singular-
value decomposition linear filter for standard q = 2 are given in Figure 2
of [8], and are compared with q = −2 in Figures 2 (a) and (b) of [7],
correspondingly, while those obtained for somewhat shorter samples (N =
4514) have been discussed in [2] and [3], using the nonlinear Schreiber
filters. Next, the generalized dimensions Dq as a function of q (see [10],
Equation 1) with the statistical errors of the average slopes obtained using
weighted least squares fitting over the scaling range are shown in Figures 3
(a) and 4 (a) of [10] and compared with one-scale and two-scale Cantor set
model (see [8], Figure 3).

5.2. Multifractal Spectrum for Turbulence

The results for the generalized dimensions Dq as a function of q, calculated
from the data and compared with those obtained using Eq. (1) for solar
wind turbulence for the slow (a) and (c) and fast (b) and (d) solar wind
streams at distances of 0.3 AU and 0.97 AU, correspondingly, are presented
in Figures 3 (a), (b), (c) and (d) of [21].

Here the results for the corresponding singularity spectra f(α) as a
function of α are shown in Figures 2 (a), (b), (c) and (d). The values of
f(α) given in Eqs. (5) and (6), for one-dimensional turbulence, d = 1, are
calculated using the radial velocity components u = vx (in time domain), cf.
Figure 3 of [21]. It is well known that for q < 0 we have some basic statistical
problems.7,10 Nevertheless, in spite of large statistical errors in Figure 2,
especially for q < 0, the multifractal character of the measure can still
clearly be discerned. Therefore one can confirm that both the spectrum of
dimensions and singularity spectrum still exhibit the multifractal structure
of the solar wind in the inner heliosphere.21

For q ≥ 0 these results agree with the usual one-scale p-model fitted to
the singularity spectra as obtained analytically using l1 = l2 = 0.5 in Eq. (1)
and the corresponding value of the parameter p = 0.21 and 0.20, 0.15 and
0.12 for the slow (a) and (c), and fast (b) and (d) solar wind streams at solar
minimum and maximum, correspondingly, as shown by dashed lines. On the
contrary, for q < 0 the p-model cannot describe the observational results.15

Here we show that the experimental values are consistent also with the
singularity spectrum obtained numerically from Eqs. (5-6) for the weighted
two-scale Cantor set using an asymmetric scaling, i.e., using unequal scales
l1 6= l2, as is shown in Figures 2 (a), (b), (c), and (d) by continuous lines.
We also confirm that the degree of multifractality and asymmetry of the
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Fig. 2. The singularity spectrum f(α) as a function of α. The values obtained for

one-dimensional turbulence are calculated for the usual one-scale (dashed lines) p-model

and the generalized two-scale (continuous lines) model with parameters fitted to the
multifractal measure µ(q, l) obtained using the vx velocity components measured by

ACE at 1 AU (diamonds) for the slow (a) and (c) and fast (b) and (d) solar wind during

solar minimum (2006) and maximum (2001), correspondingly.

solar wind in the inner heliosphere are different for slow and fast streams.
One can say that in the slow streams the scaling is more asymmetric than
those for the fast wind. It also seems that the degree of asymmetry for the
slow wind is rather anticorrelated with the phase of the solar activity.

We see that the multifractal spectrum of the solar wind is only roughly
consistent with that for the multifractal measure of the self-similar weighted
symmetric one-scale weighted Cantor set only for q ≥ 0. On the other
hand, this spectrum is in a very good agreement with two-scale asymmetric
weighted Cantor set schematically shown in Figure 1 for both positive and
negative q. Obviously, taking two different scales for eddies in the cascade,
one obtains a more general situation than in the usual p-model for fully
developed turbulence,34 especially for an asymmetric scaling, l1 6= l2. Hence
we hope that this generalized model will be a useful tool for analysis of
intermittent turbulence in space plasmas.



January 19, 2009 22:6 WSPC - Proceedings Trim Size: 9in x 6in master

70 W. M. Macek

6. Conclusions

In this way, we have supported our conjecture that trajectories describing
the system in the inertial manifold of phase space asymptotically approach
the attractor of low-dimension.2 We have shown that the multifractal spec-
trum of the solar wind attractor is consistent with that for the multifractal
measure of the generalized two-scale weighted Cantor set. The values of the
parameters fitted for l1 + l2 = 1 and p ∼ 10−1, for the slow wind, demon-
strate small dissipation of the complex solar wind plasma and show that
some parts of the attractor in phase space are visited at least one order of
magnitudes more frequently than other parts (see Figure 5 of [2]).

We have also studied the inhomogeneous rate of the transfer of the en-
ergy flux indicating multifractal and intermittent behavior of solar wind
turbulence in the inner heliosphere. In particular, we have demonstrated
that a much better agreement with the real data is obtained, especially
for q < 0. Basically, the generalized dimensions for solar wind are consis-
tent with the generalized p-model for both positive and negative q, but
rather with different scaling parameters for sizes of eddies, while the usual
p-model can only reproduce the spectrum for q ≥ 0. In general, the pro-
posed generalized two-scale weighted Cantor set model should also be valid
for non space filling turbulence. Therefore we propose this cascade model
describing intermittent energy transfer for analysis of turbulence in various
environments.

Thus these results show multifractal structure of the solar wind in the
inner heliosphere. Hence we suggest that there exists an inertial manifold for
the solar wind, in which the system has multifractal structure, and where
noise is certainly not dominant. The multifractal structure, convected by
the wind, might probably be related to the complex topology shown by the
magnetic field at the source regions of the solar wind.
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