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Estimation of the entropy of the solar wind flow
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We analyze a time series of velocities of the low-speed stream measured by the Helios spacecraft in the
inner heliosphere, which is the region of space dominated by the solar wind flow. We use a nonlinear filter to
give a faithful representation of the solar wind nonlinear behavior. We have demonstrated that the influence of
noise in the data can be much more efficiently reduced by a nonlinear filter than with the convediitieaal
filters, and this allows a more realistic calculation of the solar wind entropy. The resulting Kolmogorov entropy
is positive, and possibly the largest Lyapunov exponent is also positive locally, which would exhibit exponen-
tial sensitivity to initial conditions. Thus, these results show that the solar wind in the inner heliosphere is most
likely a deterministic chaotic system.

PACS numbgs): 05.45.Tp, 96.50.Ci, 95.10.Fh

[. INTRODUCTION dimensional time series analy$ig, namely, we focus on the
entropy of the solar wind. Therefore, we apply the modern

The dimensions of attractors and their entropies are imtechnique of nonlinear noise reductiph3—-15, which al-
portant characteristics of dynamical systems. The Kolmoglows a more realistic calculation of the Kolmogorov entropy
orov entropy is the rate of creation of information as a cha-0f the solar wind flow directly from the cleaned experimental
otic orbit evolves[1-3]. The entropy is equal to zero for a signal by using the Grassberger and Procaccia meith6id
regu|ar(periodid system, a constant greater than zero for aThe data and importance of noise reduction are discussed in
chaotic deterministic system, and infinite for a stochastic ranSec. ll. The method of estimation of the entropy and dimen-
dom system; a positive and finite entropy implies Chaos_SiOﬂ is reviewed in Sec. lll. Section IV is devoted to the
However, both the dimension and entropy describe a kind ofnain results of our calculations. In particular, we show that
scaling behavior in the limit as the distancesbetween the correlation entropy of the attractor is positive and finite,
points on the attractor approach zero. These characteristi@s it should be for a chaotic system. The entropy is plausibly
are sensitive to the presence of small amounts of nois&onstrained by a positive local Lyapunov exponent that
which may obscure the underlying fractal structure, un|es§\lOU|d exhibit sensitive dependence on initial conditions. In
the data are filtered to reduce noise contamination. In parthis way, we have further supported our previous conjecture
ticular, a zero entropy or Lyapunov exponent can be driverthat trajectories describing the system in the inertial manifold
positive by noise, or in the latter case just drift slightly posi-of phase space asymptotically approach the attractor of low
tive as the exponent fluctuates near zero. Therefore, in ordgiimension. These results provide some evidence that the
to detect and quantify chaos in any real dynamical system, gomplex solar wind is likely a deterministic chaotic system.
is necessary to deal with a cleaned experimental signal. One can also expect that this attractor should contain infor-

Following space physics applications, e[d.5], we con- ~mation about the dynamic variations of the coronal stream-
sider the inner heliosphere. Since the 1960s we have knowg¥'s. It is also possible that it represents a structure of the time
that, besides electromagnetic radiation, the Sun also radiatégquence of near-Sun coronal fine-stream tubes| Hesnd
charged particles, forming a plasma blowing nearly radiallyreéferences therein.
outward from the Sun. The solar wind plasma flowing super-

sonically away from the Sun is quite well modeled within the Il. DATA AND NOISE
framework of hydromagnetic theory. This continuous flow
has two forms: slow~300 km %) and fast(~900 kms?) We analyze the Helios data using the radial velocity com-

[6]. The fast wind is associated with coronal holes and igponentv, measured in the heliosphere near the BinWe
relatively uniform and stable, while the slow wind is quite select an interval between the crossing of the interplanetary
variable in terms of velocities. We limit our study to the current sheet and the interplanetary shock. These raw data of
low-speed stream. Indication for a chaotic attractor in theN=4514 points are shown ifv, Fig. 1(a@)]. As discussed in
slow solar wind has recently been given[in-10. In par-  [7], slow trends(349.7+21.74—96.612, with t being a
ticular, Macek[7] has provided tests for nonlinearity in the fraction of the total samp)ewere subtracted from the raw
solar wind data, including a powerful method of singular-data and the resulting original data after detrendirg,
value decompositiofil1] and statistical surrogate data tests=uv(t;), in kms %, i=1,... N, are now presented in Fig.
[12]. 1(a). However, in[7] these data were eightfold smoothed
In this paper we have extended our previous results olfreplacing each data point with the average of itself and its
two nearest neighborsCertainly, this is a particular linear
finite impulse responséFIR) filter, which should preserve
*Fax: (4822 840 3131. Email address: macek@cbk.waw.pl;the correlation dimensiof8]. On the other hand, in order to
http://www.cbk.waw.pl~macek use filters correctly and to check their efficiency, it is impor-
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Original data the extra dimension is dominated by the noise, which results
60 0 ' ' ' ' 4 in a certain shape of the correlation sum as a function of
w0k ] distances, andD (k+1,r)=D(k,r) +dpuisdr), Whered,ise
f ] denotes the dimension of the distribution of noise. In general,
~ 20 o we define the normalized effective dimension that is the sig-
© | nature of noise as
E 0 ‘
S ] D(m,r)—D(k,r)
—201 7 dp(r)=——F——. 2
: : (1) — 2
40 7
_eof 1 Assuming a Gaussian noise distribution we have the ana-
o 0 20 0 20 = lytical formula[14]
Time(hours) 5
re—(1120)
Filtered data =
—
607 : : : : : (1) = ety 20 ©

The noise levelo may be determined by a simple fit;?
=(7?). Although the noise does not seem to follow any
Gaussian distribution, this simple formula can be used di-
rectly to estimate lower and upper bounds for the noise level
as discussed if15]. The normalized effective dimensions
dmk(r) given in Eq.(2) are shown in Fig. 2 for the following
casesi(a) original data,(b) after the linear moving average

V (km ™)

-40F ]

- 1 filter, and(c) after nonlinear noise reduction. The solid lines
-60L . . ) ) ] denote lower and upper bounds for the estimated noise level.
0 10 20 30 40 50 As seen from Fig. @) the initial noise level is 4—6%. Cer-
Time(hours) tainly, the moving average filter removes some amount of
Noise noise. However, we have verified that after the moving av-
60 ' ' ' ' 1 erage linear filter of Eq(l) we still have a substantial
Py 2 h amount of noise of 2-5%see Fig. 2)]. In this case, even
C i though the logarithm of the correlation sum in the scaling
. 20F . region can provide an estimation of the correlation dimen-
o n sion, the spacing between these functions for various embed-
\§/ 0 ding dimensions is not regular, preventing us from any reli-
> _203_ R able estimation of the entropy. Naturally, noise reduction is
r 1 of more importance for estimating the entropy than for di-
40l . mensions.
605 ] Therefore, in this paper, instead of using this linear filter-
o 10 0 0 0 o ing of the signal, we apply a nonlinear filter in order to

Time(hours) reduce the noise more efficiently and to give a faithful rep-
resentation of the nonlinear behavior of the solar wind. The
FIG. 1. The radial velocity, observed by the Helios 1 space- nonlinear(Schreibey filter works in embedding space of di-
craft in 1975 from 67:08:20.5 to 69:11:Qday:h:min at distances mension 2+ 1 [13]. We construct embedding vectors that
0.32 AU from the_ Sunja) the original data:(b) the filtered data  jnyolve past and future coordinaté=(X_ ... Xi+), de-
after nonlinear noise reduction, afg) the noise removed by non- fine a neighborhood of size |Xi—Xj|<e, and then replace

linear filter. the data point by its mean value in the neighborhood,
tant to estimate the level of noise in the data before and after 1
filtering. Therefore, we discuss the influence of noise reduc- XM= > X, (4)

. . . N x. .
tion in detail as follows. i IXi=Xjl<e

We assume that the data can be decomposed into two . .
" X : - WwhereN; is the number of elements of the neighborhood
componentsx;=y;+ »;, the clean signal with some noise

added. The idea is to replace the measurementwhich [13]. . .
: . u " orr : In practice, we average over segments of the trajectory
contains noise, by a “cleaned” valug®". For example, in

h fth . FIR fil h that are close fof time steps in the past anldn the future.
the case of the moving average liter we have The size of the neighborhood should be larger than the noise

| level assumed in the data. The procedure can be iterated by
corr_ E o 1) taking decreasing until no neighbors are found and no fur-
o2l ther correction is madéusually 2—3 iterations are enough
Summarizing, we use the Schreiber filter, which averages in
If the data are embedded in phase space of dimemsittat  the embedding space of a chosen dimensibft 2 and a
is higher than that required to reconstruct the dynankcs, defined neighborhood of size about 2—3 times of the esti-




6498 WIEStAW M. MACEK AND STEFANO REDAELLI PRE 62

Original data TABLE I. The solar wind velocity fluctuation data after nonlin-
1.0 ' ' ' ear noise reduction.
F <
8° o
0.8 Number of data point$l 4514
N 8T Sampling timeAt 405 s
< 081 Skewnesscs 1.88
E Kurtosis x4 7.53
04r Relative complexity 0.12
I Autocorrelation timet, 1.6x10°s
o2 Correlation dimensiofD,? 2.7+0.3
ool . Entropy (@=2)K," 0.10+0.06
0 0.04 0.08 0.12 0.16 0.20 Largest Lyapunov exponeity ~0.1
r Predictability horizon time ~10*s
1.0 I‘,'neor f'lte,r #The average slope forsém=10 is taken aD,.
L bThe average Am=23) spacing between slopes for8n=<12 is
0.8 taken ask,.
L \° & N m=5. | ‘In the same units al<, (basee).
06
‘25. - we have actually removed about 5% of the noise, leaving
© 04 only a small non-Gaussian componéhelow 1%, as seen
L in Fig. 2(c).
02k Table | summarizes selected calculated characteristics of
L the detrended data cleaned by use of the Schreiber filter
0.0 s shown in Fig. 1b). The probability distributions are non-
0 0.04 0.08 0.12 0.16 0.20 Gaussian, more clearly than for the moving average filter, cf.
' Ref. [7]. We have a large skewness of 1.8& compared
Nonlinear filter with its normal standard deviation of 0)0énd a very large
1or o ' ' ' ] kurtosis of 7.53the latter was small for the moving average
08k ‘s o ] filter). We have also estimated the Lempel-Ziv measure of
ol m 50 complexity, relative to white noisel 7]. The calculated value
o6k M o <a<oon ~0.1 is even smaller than iiv] (~0.2); maximal complex-
Ol ¢ ity, or randomness, would have a value of 1.0, while a value
& . 4'_ o ¢ ] of zero denotes perfect deterministic nonlinear predictability.
‘ o %
| " ¢ D ]
0.2} $ 0g0%0 . g - Il. ENTROPY AND DIMENSION
0.0 R oz o o e ° As in [7], we choose a time delay=250At slightly
0 0.01 0.02 0.03 0.04 0.05 larger thant,=212At, the first zero of the autocorrelation
r function (v (t)v(t+1to))—(v(t))?)/c?*=0 with average ve-
FIG. 2. The normalized effective dimensiafy, (r) given in  1OCity (v)=0.02km §l_ and standard deviation o
Eq. (2), which is the signature of noise, as obtained(@roriginal = 8-07 kms*, cf. alsot, in Table | when the autocorrelation

data, (b) data after linear moving average filter, afwl data after ~function decreases by a factorel/

nonlinear noise reduction. The solid lines denote lower and upper Using our time series of equally spaced, detrended, and

bounds for the estimated noise level. Only after nonlinear filteringcleaned data, we construct a large number of veckdts)

has the noise been efficiently suppressed by half an order of mag=[v(t;),v(tj+ 7),...,0(t;+(m—1)7)] in the embedding

nitude, below 1%. phase space of dimension wherei=1, ... ,n with n=N
—(m—1)7. Then, we divide this space into a large humber

mated initial noise leve[13]. We have performed three it- M(r) of equal hypercubes of size which cover the pre-
erations taking the following input parameters=3, e sumed attractor. Ip; is the probability measure that a point
=0.15;1=6, €=0.08;| =6, e=0.012. The filtered data after from a time series falls in a typicath hypercube, using the
this procedure are shown in Fig(hl, and the nois¢that is, ~ g-order functionlq(r)=2(p;)% j=1,... M, the g-order
the difference between the original data in Figa)land the  Renyi-Kolmogorov information entropy is, e.¢2,3,16,
filtered datd is presented in Fig.(t). It is worth noting that

only after nonlinear filtering has the noise efficiently been o 1
reduced to 0.3-0.9%see Fig. 2)], i.e., by half an order of Kg=Ilim lim ﬁlnlq(r)- 5)
magnitude, as compared with the original data, Fig).2n r—0m—e

addition, the calculated probability distribution of noise

shown in Fig. 1c) is roughly consistent with a normally The related generalized dimensi¢8,3] is given by D,
distributed set of random numbers witt¥=0.05. In thisway,  =[1/(q—1)]lim,_o[Inly(r)/Inr], as has been discussed ex-
we have verified that by use of the nonlinear Schreiber filtetensively in[7].
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In practice,q=2 is sufficient andl,(r) is taken to be Original data
equal to the correlation sufi8] of ' ' zéﬁgw
a R4
1M " o L oRaEx 1
Cu(r)=—2 ——=——— > 6(r—|X(t;) = X(t; - 0 pROXT
m( ) Nooei _ 1. ( | ( |) (J)') o ATt
refi=1 N 2nc 1j:nc+l —~ -4t ""‘(OOASEQY'— a
(6) (éE OOZADE§+ mea -
with 6(x) being the unit step function, wheng=500isthe ~ ~ ~6 OOAADEY net ]
number of reference vectors and=4 is Theiler’s correc- i G0 AR m=7 O
tion [19]. Since the correlation sum is simply an arithmetic I R m=g X 7
average over the numbers of neighbors, this can yield mean- T o s By mee ¥
ingful results for the dimension and entropy even when the _10_4 S _”‘3 + _'2 _'1 o
number of neighbors available for some reference points is Inr
limited in most real dynamical systems. For largeand )
smallr in the scaling region it can be argued that o . F'lterefj dot?-ggmw-“'m
C(r)ocrPee=mke (7) ok °) ..-;<'>'§X§§++ .
o asOX
whereD, andK, are approximations of the ideal~0 and "éoZZAggf
m—oe limits in Eq. (5) for q=2 [16]. ORI OOAAQEE ]
& oogéégg . -
. o° "
IV. RESULTS AND DISCUSSION < _65225699_@%%& e a ]
In Figs. 3—6 we show the results of our calculations as -8 5§§>§+ ::; E =
obtained for the following data set&) the original data(b) o+ m=9 +
the cleaned experimental signal after nonlinear noise reduc- -1 ! ‘ )
tion, and(c) the noise that has been removed by the nonlin- -4 -3 I;Zr -1 0
ear filter. First, we calculate the natural logarithm of the cor-
relation sumC,,(r) versus I (normalized for various Noise ]
embedding dimensions:m=4 (dotted curvg 5 (dia- of ' ' oéﬁ%g i
monds, 6 (triangles, 7 (squarel 8 (crossey and 9 (plus b c) ,,.~'<’>"<>Zé++ |
signg. The results obtained using the nonlinear Schreiber | ‘,,,»;}oAé% ]
filter are presented in Fig.(B), while those obtained using e ‘,,»"’OOASEF |
the moving average and singular-value decomposition linear . OOAADXJr ]
filters have been discussed extensivelyh © o A Oy m=4
The slopeD,,(r)=d[In C(r)J/d(Inr) of the correlation B _6__ OOAADDX+ moe z
sum C,(r) versus Ir obtained for various embedding di- A% A n m=7 0O
mensionsm for (a) original data,(b) after nonlinear noise -8 00 AADDX + :': ﬁ ]
reduction, and(c) noise removed by nonlinear filter are _ol i o B ox © .
shown in Figs. éa)—4(c). As discussed if14], usually one _4 _z 2 4 0
can distinguish different types of behavior Df;(r) for In r

different regions of scale: Obviously, for very smalr the FIG. 3. The natural logarithms of the correlation s@p(r)
lack of points is the dominant feature resulting in large sta-

- . . versus Ir (normalized are shown for various embedding dimen-
tistical fluctuations. Somewhat largeare dominated by the sionsm=14 (dotted curvg 5 (diamonds, 6 (triangles, 7 (squares
noise in the data and in this case we expect Daf(r)

. ) - ’ 8 (crossey and 9(plus sign$ as obtained fofa) original data,(b)
should be proportional to the embedding dimensiorfar- a4 after nonlinear noise reduction, aistinoise removed by non-
ther, in the proper scaling region of distancesif the |inear filter.

D-dimensional attractor exists, we expect a plateau of the
slopes foom=D [20] and in the worst case fan>2D [21]; ear moving average filt¢i7, Fig. 7a)] shows that the former
the plateau independent of should provide the proper cor- is wider, clearer, and shifted toward smaller distances, but
related dimension. Naturally, if distanceare of the order of the slopes are somewhat smaller. Further, its width agrees
the size of the entire attractor, scale invariance is no longewith the estimates given by Olbrich and Kantz[22]. They
expected. have shown that on large scales the data cannot be distin-
For the case of the moving average and singular-valuguished from random data and the determinism becomes vis-
decomposition linear filters the rangerofvith the meaning- ible only below a certain length scale. Therefore the plateau
ful plateau of slopes is limited te- 3.0<Inr<—1.5(se€[7]). in Fig. 4b) ends at about~e 2.
The slopes obtained by using the nonlinear Schreiber filter Formlarge enough an average slope in the scaling region
are shown in Fig. é). Here, using the Schreiber filter, ow- indicates a proper correlation dimensiog. In Fig. 4b) we
ing to more efficient noise reduction for small distances, thesee a clear plateau, which appears alreadynfer4 (dotted
plateau is obtained for-4.5<Inr<—2.0. Comparison of curve andm=5. For higher dimensionsy= 10, the plateau
this plateau for dimension after nonlinear noise reductionjs still present but more smeared out by the statistical fluc-
Fig. 4(b), with the corresponding plateau after using the lin-tuations at smalt. In the case of the moving average filter,
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Original data Original data
']O T T T 'l O T T T
- + m 4 o - - 4
G) X m=5 < 0) m= :
N 8_A m= A = 0.8 m=8 < —
c | +F+4 m=7 0O ] F m=9 A h 1
£ ¢ m %
o Ap % m = X m=100 |
6 A O a X X + m + — —~ 0.6 m=11 X oy 7
> & E§AED Ty b J :g L m =12 xxg J
< & poTo AAAﬁg & WA+ s A%
I I O DHRNKERT X i 0.4 +E887 4
o 4 R N I 00000 AAD + R QX -.
e | IT0000 A Oy | L O @ <><> ¢ 1
° e @onbx ] T 0 [
2 PN = 0.2 o xxXXé .
| 0%|:|+ L o ++ +++§§ E
+
0 I I é ﬁﬁm 0.0 L L . éﬁnm
—4 -3 -2 -1 0 —4 -3 -2 -1 0
Inr Inr
Filtered data Filtered data
10 T T T 1.0 T T T
L m=4 - i - 4
b) m=5 < b) m=7 -
N 8H m = A — 0.8 m=8 < —
c L m= a | - m=9 é E
- _ X m =10
s moe 4+ ’:0'6_5 m=1 X 7
: L i \'E .Q + m=12 + 4
= X% gL ++
3 L é X+ o < 0.4 GQQE -
Q 4 + g DX o X .
= éagﬁ§® u+ : AR 7 ool ‘
= A >< F no
-, BEEERREssREES 7 ] ool gfa%§ T ‘ ]
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FIG. 5. The functionK, ,(r) = (/Am)IN[C(r)/Cps am(r)] ver-
sus Inr (Am=3) for various embedding dimensions calculated
for (a) original data,(b) cleaned experimental signal after nonlinear
noise reduction, an¢t) noise removed by nonlinear filter. Only in
case(b) is there a clear plateau #,~0.1 (basee), dash-dotted

FIG. 4. The slope®,,(r)=d[In C(r))/d(Inr) of the correla-
tion sumC,,(r) versus Irr obtained for(a) original data,(b) data
after nonlinear noise reduction, afgj noise removed by nonlinear
filter shown for various embedding dimensiams

the slope of the calculated correlation sum saturates fofne-

m>5, with an average for €m=10 providing

D,=3.7+0.3(see Ref[7]); this is consistent with the attrac- tween the straight lines in Fig. 3,

tor of low dimension. Now, as seen from Figh4 the cor-

responding average slope for the Schreiber filter is consider-

ably smaller,D,=2.7+0.3. Admittedly, filtering can, in K _ 1 Cr(n)

general, change the dimension of the attractor. It can be 2m(f)= A Chram(r)’

proved that every generic finite-step moving average filter

preserves the correlation dimension, because it preserve the

one-to-one propert}3]. On the other hand, infinite impulse is related to the correlation entroggecond orderg=2)

response filters may only increase the dimen$8j, which ~ [18]. Namely, for values of inside the plateau in the dimen-

is equivalent to augmenting the system with a new variableion plots the factor®2 in Eq. (7) is almost constant and we

[3]. Conversely, we see that after the nonlinear Schreibecan determine the entropy by plottifg, (r) both versug

filter the calculated dimension has been somewhat reducedor variousm, Fig. 5, and versusn for variousr, Fig. 6,
Second, for a givethm, the average vertical spacing be- again as calculated for the following data set$a) original

®
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Original data TABLE II. The correlation entropyK,(r) calculated from the
1.0 ' ' ' ' ' cleaned experimental data.
a) o} r=e® ]
0.8 o % roe? | Inr Average 8sms<12
06 _ -2.4 0.16:0.03
< L -2.5 0.10-0.04
SN _ -2.6 0.10-0.06
L —-2.8 0.11-0.07
0ok _ -2.9 0.110.08
0.0 i Average over I 0.10+0.06

Embedding Dimension, m
5(b) for the entropy is narrower than the plateau foy(r)
, , in Fig. 4(b) for the dimension. Apparently, these plateaus are
. also limited for larger, especially for largan, as seen for
0.8 i m=11 and 12 in Fig. t) (a large number of points is
c ] needed form>10). Nevertheless, as discussed[&2], we
- can calculate the entropy below a length scale-ee 2. In
contrast, there is no plateau even for modenatdor the
original data contaminated with noise, Figap and, obvi-
ously, for anym for the noise itself, Fig. &). As seen in Fig.
3(c), the correlation sums are converging with Iidence the
i, P | spacing between the lines in E) is decreasing linearly
0.0 , , , . with Inr, as shown in Fig. &), which is a typical behavior
4 6 8 10 12 for the noise case. On the other hand, for an ideal determin-
Embedding Dimension, m istic system, for largen within a scaling region, the spacing
between the parallel straight lines should be constant. This
- ' demonstrates that the modern technique of nonlinear noise
T o) s ] reduction[13-15 is necessary for a realistic calculation of
0.8 s the Kolmogorov entropy in the solar wind flow, and prob-
- 1 ably in most real complex systems. By the way, the plateau
0.6 . in Fig. 5(b) for the cleaned solar wind data is similar to the
plateau for thenuclear magnetic resonandaser datgwith
. a larger number of data pointd|=38 000 obtained after
] nonlinear noise reduction by Kantz and Schreiber ([df5],
0.2 i Fig. 11.3.
L | Next, the vertical spacing between the straight lines
0.0 s s s s s K,m(r) calculated using the nonlinear filter versus the em-
4 6 8 10 12 bedding dimensiorm (for m=4, ...,13 for various dis-
Embedding Dimension, m tances in the scaling region with a plateau is shown in Fig.
FIG. 6. The functionK, (r) (basee) versus the embedding 6 for (a) 0“9"?3,' data,(b) filtered data, gn(ﬂc) noise. In the
dimensionm for various distancesin the scaling region calculated d€@l case(infinite number of data pointsthe entropy for
for (a) original data,(b) cleaned experimental signal after nonlinear N0iSe would increase to infinity with increasimg and in
noise reduction, anét) noise removed by nonlinear filter. Only in Particular we would have a linear increase for a Gaussian
case(b) does the average saturated value yield the correlation er20ise. Conversely, the entropy should decrease to zero for a
tropy of K,=0.10+0.06; see Tables | and II. regular periodic system and to a constant greater than zero
for a deterministic aperiodic system. Again, only for the fil-
data, (b) cleaned experimental signal after nonlinear noisetered data in Fig. ®) do we see a clear saturation, while for
reduction, andc) noise that has been removed by the non-the case of noise, Fig.(®, the calculated entropy increases
linear filter. with m, as it should for a stochastic system. Naturally, as for
The values of this functiof,,(r) given in Eq.(8) ob-  any real system, because the number of available vectors is
tained after noise reduction versug lare shown in Fig. &) decreasing withm, the entropy for the noise removed from
for various embedding dimensions (we takeAm=3). For  the solar wind data ceases to increase in F{g).6
8=m=12 there is a plateau &t,~0.1 (basee) (dash-dotted We also calculate the largest positive Lyapunov exponent
line). Strictly speaking, the ideal entropy of B§) is defined A USiNg @ quite robust algorithm of Kanft24]. We obtain
in them— oo limit (in addition to ther — 0 limit for both the  the magnitude of~0.1 for the data after nonlinear noise
dimension and entropy However, the available number of reduction, in the same units as fid, (basee). Certainly, a
vectors decreases witm and the higher dimensions are reliable calculation of the Lyapunov exponent would require
dominated by noise, as discussed in Secs. Il and lll. Admitmany more data points. Therefore, we can only demonstrate
tedly, it is not surprising that the plateau 66 ,(r) in Fig.  that a positive largest Lyapunov exponent is not excluded. In
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FIG. 7. The functionK,,(r) (basee) versus the embedding FIG. 8. The functionK,,(r) (basee) versus the embedding
dimensionm for various distancesin the scaling region calculated dimensionm for various distancesin the scaling region calculated
for the Hanon map(a=1.4,b=0.3) using 2000 iterates faja) data  for Rossler chaos equatiorig=0.15,b=0.2, c=10) using 4096
file with 5% noise,(b) filtered data after nonlinear noise reduction, data points at intervals aft=0.3 s, 7=2At; (a) data file with 5%
and(c) noise removed by nonlinear filter. Only in ca$® does the  noise,(b) filtered data after nonlinear noise reduction, &c)dnoise
average saturated value yield the proper correlation entrop§,of removed by nonlinear filter.
=0.325(dash-dotted ling

distinct from those derived for the original data. Again, we
general, the entrop¥, is at most the sum of the positive have found here that the solar wind data are sensitive to this
Lyapunov exponent8\;, e.g.,[3]. As shown in Table I, the test. In particular, as compared with the values of Table I, the
value of the Lyapunov exponent is consistent with the coriLempel-Ziv complexity calculated for shuffled data becomes
relation entropy K,=0.1, which should be its lower 1.0. Further, contrary to the case of the filtered solar wind
bound: K,=<ZX3\; (positive. The time over which the mean- data, there is no saturation of the functi&n (r) for the
ingful prediction of the behavior of the system is possible issurrogate data for largen;, instead this function increases
roughly ~1/\ na, €.9.,[3]. Hence the predictability of the with m as it should for stochastic data.
system would be limited to houf4.0]. Our next point is comparison of the estimates of the solar

The measures of the attractor obtained have also beemind entropy with other classical model systems corrupted
subjected to surrogate data tgsttg]. As is shown in(7], Fig. by noise. Therefore, we have rerun our analysis also with
8, if the original data are indeed deterministic, analysis oftwo typical model systems: a discrete chaoticnbie map,
these surrogate data will provide values that are statisticallyhich is often used for calibration of the largest Lyapunov
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exponeni{a=1.4,b=0.3) using 2000 iterates, and a continu- according to Eq(7). Admittedly, this is merely an approxi-
ous chaotic system generated by 'sBler equations(a  mation of the ideam—c limit in Eq. (5) for q=2.
=0.15,b=0.2,c=10) using 4096 data points at intervals of  Finally, the spacings between the parallel lines averaged
At=0.3s, 7=2At, both with purposely added 5% noise. in the saturation region8m=12 are taken ak,(r). These
The calculated values df,,(r) for both cases using the saturated values given in Fig(t§ averaged over Inyield
nonlinear Schreiber filter versus the embedding dimension the correlation entrop¥,=0.10+0.06 (basee). Naturally,

(for m=4,...,13 for various distances in the scaling re- the errors given in Tables | and Il are obtained assuming
gion with a plateau fofa) data file with added 5% nois€éy)  their normal distribution over the scaling range. Certainly,
filtered data, andc) noise removed by nonlinear filter are these errors increase for smalteand the maximum error in
shown in Figs. 7 and 8, respectively. Only for the filteredthe scaling region is given here. Anyway, a clear saturation
data files(b) does the average saturated value yield theof K, (r) in Fig. 6(b) for 8<m=12 and varioug in the
proper correlation entropy(dash-dotted lines e.g., K,  scaling region, below a critical scale of-e~?, shows that
=0.325+0.02 in Fig. 7b) for the Haon map 16]. Since the the correlation entropy of the attractor is positive and finite,
number of available vectors is decreasing with the en-  as it should be for a chaotic system.

tropy for the noise removed from the initially noisy ktn

map in Fig. 1c) and for the noise removed by nonlinear filter V. CONCLUSIONS
from the noisy Resler data in Fig. @) ceases to increase
with m. A somewhat similar saturation for larga is also To conclude, the moving average linear filter removes

seen in Fig. &) for the solar wind data. Also, deviations some amount of noisgeaving several percentHowever, in
from linear increase are seen in all these figures, Fi@3, 6 practice, it could also possibly increase the calculated corre-
7(c), and §c), because the Schreiber filter does not necessatation dimension. In contrast, after the nonlinear Schreiber
ily remove only a Gaussian noise, but possibly also its nonfilter, owing to more efficient noise reduction at small dis-
Gaussian component. On the other hand, in the correspontinces, we have obtained a better plateau, which is wider and
ing case of the data cleaned by nonlinear filter in Figb),6 shifted toward smaller distances, but the dimension is some-
7(b), and &b) the entropy is decreasing with, finally satu-  what reduced. However, this technique of nonlinear noise
rating for largem. Clearly, the saturation in these figures reduction allows a more realistic estimation of the Kolmog-
cannot result from decreasing of the available number obrov correlation entropy. The entropy is positive, and plau-
vectors withm, because, just on the contrary, we would sibly the largest Lyapunov exponent is also positive locally,
rather have had a deeper decreaseKgfwith m instead. which would exhibit sensitive dependence on initial condi-
Hence we believe that the saturation results from a determirtions. The characteristics of the attractor obtained are signifi-
istic component of the system dynamics. Therefore, an articantly different from those of the surrogate data. Hence we
fact in saturation in Fig. ®) is highly improbable. Surpris- suggest that there exists an inertial manifold for the solar
ingly, the saturation for the solar wind data is even bettewind in the inner heliosphere, in which the system is nonlin-
than the saturation for the well-known noisy $3ter system, ear and possibly chaotic, and where noise is certainly not
with roughly the same number of points as our complex soladominant. This means that the observed irregular behavior of
wind system, and for the classical noisy d@ map, but the velocity fluctuations results from intrinsic nonlinear cha-
with a smaller number of pointéoth cleaned by nonlinear otic dynamics rather than from random external forces.
filter). This shows again that the saturation in Figh)6for

the solar wind is not art|f|C|aI.. We have yenﬂed the robust- ACKNOWLEDGMENT
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