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Estimation of the entropy of the solar wind flow

Wiesław M. Macek* and Stefano Redaelli
Space Research Centre, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warsaw, Poland

~Received 10 September 1999; revised manuscript received 27 July 2000!

We analyze a time series of velocities of the low-speed stream measured by the Helios spacecraft in the
inner heliosphere, which is the region of space dominated by the solar wind flow. We use a nonlinear filter to
give a faithful representation of the solar wind nonlinear behavior. We have demonstrated that the influence of
noise in the data can be much more efficiently reduced by a nonlinear filter than with the conventional~linear!
filters, and this allows a more realistic calculation of the solar wind entropy. The resulting Kolmogorov entropy
is positive, and possibly the largest Lyapunov exponent is also positive locally, which would exhibit exponen-
tial sensitivity to initial conditions. Thus, these results show that the solar wind in the inner heliosphere is most
likely a deterministic chaotic system.

PACS number~s!: 05.45.Tp, 96.50.Ci, 95.10.Fh
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I. INTRODUCTION

The dimensions of attractors and their entropies are
portant characteristics of dynamical systems. The Kolm
orov entropy is the rate of creation of information as a c
otic orbit evolves@1–3#. The entropy is equal to zero for
regular~periodic! system, a constant greater than zero fo
chaotic deterministic system, and infinite for a stochastic r
dom system; a positive and finite entropy implies cha
However, both the dimension and entropy describe a kind
scaling behavior in the limit as the distancesr between
points on the attractor approach zero. These characteri
are sensitive to the presence of small amounts of no
which may obscure the underlying fractal structure, unl
the data are filtered to reduce noise contamination. In p
ticular, a zero entropy or Lyapunov exponent can be driv
positive by noise, or in the latter case just drift slightly po
tive as the exponent fluctuates near zero. Therefore, in o
to detect and quantify chaos in any real dynamical system
is necessary to deal with a cleaned experimental signal.

Following space physics applications, e.g.,@4,5#, we con-
sider the inner heliosphere. Since the 1960s we have kn
that, besides electromagnetic radiation, the Sun also rad
charged particles, forming a plasma blowing nearly radia
outward from the Sun. The solar wind plasma flowing sup
sonically away from the Sun is quite well modeled within t
framework of hydromagnetic theory. This continuous flo
has two forms: slow~'300 km s21! and fast~'900 km s21!
@6#. The fast wind is associated with coronal holes and
relatively uniform and stable, while the slow wind is qui
variable in terms of velocities. We limit our study to th
low-speed stream. Indication for a chaotic attractor in
slow solar wind has recently been given in@7–10#. In par-
ticular, Macek@7# has provided tests for nonlinearity in th
solar wind data, including a powerful method of singula
value decomposition@11# and statistical surrogate data tes
@12#.

In this paper we have extended our previous results

*Fax: ~4822! 840 3131. Email address: macek@cbk.waw.
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dimensional time series analysis@7#, namely, we focus on the
entropy of the solar wind. Therefore, we apply the mode
technique of nonlinear noise reduction@13–15#, which al-
lows a more realistic calculation of the Kolmogorov entro
of the solar wind flow directly from the cleaned experimen
signal by using the Grassberger and Procaccia method@16#.
The data and importance of noise reduction are discusse
Sec. II. The method of estimation of the entropy and dim
sion is reviewed in Sec. III. Section IV is devoted to th
main results of our calculations. In particular, we show th
the correlation entropy of the attractor is positive and fini
as it should be for a chaotic system. The entropy is plaus
constrained by a positive local Lyapunov exponent t
would exhibit sensitive dependence on initial conditions.
this way, we have further supported our previous conject
that trajectories describing the system in the inertial manif
of phase space asymptotically approach the attractor of
dimension. These results provide some evidence that
complex solar wind is likely a deterministic chaotic syste
One can also expect that this attractor should contain in
mation about the dynamic variations of the coronal strea
ers. It is also possible that it represents a structure of the t
sequence of near-Sun coronal fine-stream tubes; see@7# and
references therein.

II. DATA AND NOISE

We analyze the Helios data using the radial velocity co
ponentv, measured in the heliosphere near the Sun@6#. We
select an interval between the crossing of the interplane
current sheet and the interplanetary shock. These raw da
N54514 points are shown in@7, Fig. 1~a!#. As discussed in
@7#, slow trends~349.7121.74t296.61t2, with t being a
fraction of the total sample! were subtracted from the raw
data and the resulting original data after detrending,xi
5v(t i), in km s21, i 51, . . . ,N, are now presented in Fig
1~a!. However, in @7# these data were eightfold smoothe
~replacing each data point with the average of itself and
two nearest neighbors!. Certainly, this is a particular linea
finite impulse response~FIR! filter, which should preserve
the correlation dimension@3#. On the other hand, in order t
use filters correctly and to check their efficiency, it is impo

;
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PRE 62 6497ESTIMATION OF THE ENTROPY OF THE SOLAR WIND FLOW
tant to estimate the level of noise in the data before and a
filtering. Therefore, we discuss the influence of noise red
tion in detail as follows.

We assume that the data can be decomposed into
components,xi5yi1h i , the clean signal with some nois
added. The idea is to replace the measurementxi , which
contains noise, by a ‘‘cleaned’’ valuexi

corr. For example, in
the case of the moving average FIR filter we have

xi
corr5

1

2l 11 (
j 52 l

l

xi 1 j . ~1!

If the data are embedded in phase space of dimensionm that
is higher than that required to reconstruct the dynamicsk,

FIG. 1. The radial velocityv observed by the Helios 1 space
craft in 1975 from 67:08:20.5 to 69:11:07~day:h:min! at distances
0.32 AU from the Sun;~a! the original data,~b! the filtered data
after nonlinear noise reduction, and~c! the noise removed by non
linear filter.
er
-

o

the extra dimension is dominated by the noise, which res
in a certain shape of the correlation sum as a function
distancesr, andD(k11,r )5D(k,r )1dnoise(r ), wherednoise
denotes the dimension of the distribution of noise. In gene
we define the normalized effective dimension that is the s
nature of noise as

dm,k~r !5
D~m,r !2D~k,r !

m2k
. ~2!

Assuming a Gaussian noise distribution we have the a
lytical formula @14#

dm,k~r !5
re2~r /2s!2

sp1/2erf~r /2s!
. ~3!

The noise levels may be determined by a simple fit,s2

5^h2&. Although the noise does not seem to follow a
Gaussian distribution, this simple formula can be used
rectly to estimate lower and upper bounds for the noise le
as discussed in@15#. The normalized effective dimension
dm,k(r ) given in Eq.~2! are shown in Fig. 2 for the following
cases:~a! original data,~b! after the linear moving averag
filter, and~c! after nonlinear noise reduction. The solid line
denote lower and upper bounds for the estimated noise le
As seen from Fig. 2~a! the initial noise level is 4–6%. Cer
tainly, the moving average filter removes some amount
noise. However, we have verified that after the moving
erage linear filter of Eq.~1! we still have a substantia
amount of noise of 2–5%@see Fig. 2~b!#. In this case, even
though the logarithm of the correlation sum in the scali
region can provide an estimation of the correlation dime
sion, the spacing between these functions for various emb
ding dimensions is not regular, preventing us from any re
able estimation of the entropy. Naturally, noise reduction
of more importance for estimating the entropy than for
mensions.

Therefore, in this paper, instead of using this linear filt
ing of the signal, we apply a nonlinear filter in order
reduce the noise more efficiently and to give a faithful re
resentation of the nonlinear behavior of the solar wind. T
nonlinear~Schreiber! filter works in embedding space of d
mension 2l 11 @13#. We construct embedding vectors th
involve past and future coordinatesX i5(xi 2 l ,...,xi 1 l), de-
fine a neighborhood of sizee, uX i2X j u,e, and then replace
the data point by its mean value in the neighborhood,

xi
corr5

1

Ni
(

uXi2X j u,e
xj , ~4!

where Ni is the number of elements of the neighborho
@13#.

In practice, we average over segments of the traject
that are close forl time steps in the past andl in the future.
The size of the neighborhood should be larger than the n
level assumed in the data. The procedure can be iterate
taking decreasinge until no neighbors are found and no fu
ther correction is made~usually 2–3 iterations are enough!.
Summarizing, we use the Schreiber filter, which average
the embedding space of a chosen dimension 2l 11 and a
defined neighborhood of sizee, about 2–3 times of the esti
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6498 PRE 62WIESŁAW M. MACEK AND STEFANO REDAELLI
mated initial noise level@13#. We have performed three it
erations taking the following input parameters:l 53, e
50.15; l 56, e50.08; l 56, e50.012. The filtered data afte
this procedure are shown in Fig. 1~b!, and the noise@that is,
the difference between the original data in Fig. 1~a! and the
filtered data# is presented in Fig. 1~c!. It is worth noting that
only after nonlinear filtering has the noise efficiently be
reduced to 0.3–0.9%@see Fig. 2~c!#, i.e., by half an order of
magnitude, as compared with the original data, Fig. 2~a!. In
addition, the calculated probability distribution of nois
shown in Fig. 1~c! is roughly consistent with a normall
distributed set of random numbers withs50.05. In this way,
we have verified that by use of the nonlinear Schreiber fi

FIG. 2. The normalized effective dimensiondm,k(r ) given in
Eq. ~2!, which is the signature of noise, as obtained for~a! original
data,~b! data after linear moving average filter, and~c! data after
nonlinear noise reduction. The solid lines denote lower and up
bounds for the estimated noise level. Only after nonlinear filter
has the noise been efficiently suppressed by half an order of m
nitude, below 1%.
r

we have actually removed about 5% of the noise, leav
only a small non-Gaussian component~below 1%!, as seen
in Fig. 2~c!.

Table I summarizes selected calculated characteristic
the detrended data cleaned by use of the Schreiber fi
shown in Fig. 1~b!. The probability distributions are non
Gaussian, more clearly than for the moving average filter,
Ref. @7#. We have a large skewness of 1.88~as compared
with its normal standard deviation of 0.06! and a very large
kurtosis of 7.53~the latter was small for the moving averag
filter!. We have also estimated the Lempel-Ziv measure
complexity, relative to white noise@17#. The calculated value
;0.1 is even smaller than in@7# ~;0.2!; maximal complex-
ity, or randomness, would have a value of 1.0, while a va
of zero denotes perfect deterministic nonlinear predictabil

III. ENTROPY AND DIMENSION

As in @7#, we choose a time delayt5250Dt slightly
larger thant05212Dt, the first zero of the autocorrelatio
function (̂ v(t)v(t1t0)&2^v(t)&2)/s250 with average ve-
locity ^v&50.02 km s21 and standard deviation s
58.07 km s21, cf. alsota in Table I when the autocorrelatio
function decreases by a factor 1/e.

Using our time series of equally spaced, detrended,
cleaned data, we construct a large number of vectorsX(t i)
5@v(t i),v(t i1t),...,v„t i1(m21)t…# in the embedding
phase space of dimensionm, wherei 51, . . . ,n with n5N
2(m21)t. Then, we divide this space into a large numb
M (r ) of equal hypercubes of sizer, which cover the pre-
sumed attractor. Ifpj is the probability measure that a poin
from a time series falls in a typicalj th hypercube, using the
q-order function I q(r )5((pj )

q, j 51, . . . ,M , the q-order
Renyi-Kolmogorov information entropy is, e.g.,@2,3,16#,

Kq5 lim
r→0

lim
m→`

1

12q
lnI q~r !. ~5!

The related generalized dimension@2,3# is given by Dq
5@1/(q21)# limr→0@ ln Iq(r)/ln r#, as has been discussed e
tensively in@7#.

er
g
g-

TABLE I. The solar wind velocity fluctuation data after nonlin
ear noise reduction.

Number of data pointsN 4514
Sampling timeDt 40.5 s
Skewnessk3 1.88
Kurtosisk4 7.53
Relative complexity 0.12
Autocorrelation timeta 1.63103 s
Correlation dimensionD2

a 2.760.3
Entropy (q52)K2

b 0.1060.06
Largest Lyapunov exponentlmax

c ;0.1
Predictability horizon time ;104 s

aThe average slope for 6<m<10 is taken asD2 .
bThe average (Dm53) spacing between slopes for 8<m<12 is
taken asK2 .
cIn the same units asK2 ~basee!.
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PRE 62 6499ESTIMATION OF THE ENTROPY OF THE SOLAR WIND FLOW
In practice,q52 is sufficient andI 2(r ) is taken to be
equal to the correlation sum@18#

Cm~r !5
1

nref
(
i 51

nref 1

n22nc21 (
j 5nc11

n

u„r 2uX~ t i !2X~ t j !u…

~6!

with u(x) being the unit step function, wherenref5500 is the
number of reference vectors andnc54 is Theiler’s correc-
tion @19#. Since the correlation sum is simply an arithme
average over the numbers of neighbors, this can yield me
ingful results for the dimension and entropy even when
number of neighbors available for some reference point
limited in most real dynamical systems. For largem and
small r in the scaling region it can be argued that

Cm~r !}r D2e2mK2 ~7!

whereD2 andK2 are approximations of the idealr→0 and
m→` limits in Eq. ~5! for q52 @16#.

IV. RESULTS AND DISCUSSION

In Figs. 3–6 we show the results of our calculations
obtained for the following data sets:~a! the original data,~b!
the cleaned experimental signal after nonlinear noise red
tion, and~c! the noise that has been removed by the non
ear filter. First, we calculate the natural logarithm of the c
relation sumCm(r ) versus lnr ~normalized! for various
embedding dimensions:m54 ~dotted curve!, 5 ~dia-
monds!, 6 ~triangles!, 7 ~squares!, 8 ~crosses!, and 9 ~plus
signs!. The results obtained using the nonlinear Schrei
filter are presented in Fig. 3~b!, while those obtained using
the moving average and singular-value decomposition lin
filters have been discussed extensively in@7#.

The slopesD2,m(r )5d@ ln Cm(r)#/d(ln r) of the correlation
sum Cm(r ) versus lnr obtained for various embedding d
mensionsm for ~a! original data,~b! after nonlinear noise
reduction, and~c! noise removed by nonlinear filter ar
shown in Figs. 4~a!–4~c!. As discussed in@14#, usually one
can distinguish different types of behavior ofD2,m(r ) for
different regions of scaler. Obviously, for very smallr the
lack of points is the dominant feature resulting in large s
tistical fluctuations. Somewhat largerr are dominated by the
noise in the data and in this case we expect thatD2,m(r )
should be proportional to the embedding dimensionm. Far-
ther, in the proper scaling region of distancesr, if the
D-dimensional attractor exists, we expect a plateau of
slopes form>D @20# and in the worst case form.2D @21#;
the plateau independent ofm should provide the proper cor
related dimension. Naturally, if distancesr are of the order of
the size of the entire attractor, scale invariance is no lon
expected.

For the case of the moving average and singular-va
decomposition linear filters the range ofr with the meaning-
ful plateau of slopes is limited to23.0, ln r,21.5 ~see@7#!.
The slopes obtained by using the nonlinear Schreiber fi
are shown in Fig. 4~b!. Here, using the Schreiber filter, ow
ing to more efficient noise reduction for small distances,
plateau is obtained for24.5, ln r,22.0. Comparison of
this plateau for dimension after nonlinear noise reducti
Fig. 4~b!, with the corresponding plateau after using the l
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ear moving average filter@7, Fig. 7~a!# shows that the former
is wider, clearer, and shifted toward smaller distances,
the slopes are somewhat smaller. Further, its width ag
with the estimates given by Olbrich and Kantz in@22#. They
have shown that on large scales the data cannot be di
guished from random data and the determinism becomes
ible only below a certain length scale. Therefore the plate
in Fig. 4~b! ends at aboutr;e22.

For m large enough an average slope in the scaling reg
indicates a proper correlation dimensionD2 . In Fig. 4~b! we
see a clear plateau, which appears already form54 ~dotted
curve! andm55. For higher dimensions,m>10, the plateau
is still present but more smeared out by the statistical fl
tuations at smallr. In the case of the moving average filte

FIG. 3. The natural logarithms of the correlation sumCm(r )
versus lnr ~normalized! are shown for various embedding dime
sionsm54 ~dotted curve!, 5 ~diamonds!, 6 ~triangles!, 7 ~squares!,
8 ~crosses!, and 9~plus signs! as obtained for~a! original data,~b!
data after nonlinear noise reduction, and~c! noise removed by non-
linear filter.
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6500 PRE 62WIESŁAW M. MACEK AND STEFANO REDAELLI
the slope of the calculated correlation sum saturates
m.5, with an average for 6<m<10 providing
D253.760.3 ~see Ref.@7#!; this is consistent with the attrac
tor of low dimension. Now, as seen from Fig. 4~b!, the cor-
responding average slope for the Schreiber filter is consi
ably smaller, D252.760.3. Admittedly, filtering can, in
general, change the dimension of the attractor. It can
proved that every generic finite-step moving average fi
preserves the correlation dimension, because it preserve
one-to-one property@3#. On the other hand, infinite impuls
response filters may only increase the dimension@23#, which
is equivalent to augmenting the system with a new varia
@3#. Conversely, we see that after the nonlinear Schre
filter the calculated dimension has been somewhat reduc

Second, for a givenDm, the average vertical spacing b

FIG. 4. The slopesD2,m(r )5d@ ln Cm(r)#/d(ln r) of the correla-
tion sumCm(r ) versus lnr obtained for~a! original data,~b! data
after nonlinear noise reduction, and~c! noise removed by nonlinea
filter shown for various embedding dimensionsm.
or

r-

e
r

the

le
er
d.

tween the straight lines in Fig. 3,

K2,m~r !5
1

Dm
ln

Cm~r !

Cm1Dm~r !
, ~8!

is related to the correlation entropy~second order,q52!
@18#. Namely, for values ofr inside the plateau in the dimen
sion plots the factorr D2 in Eq. ~7! is almost constant and w
can determine the entropy by plottingK2,m(r ) both versusr
for various m, Fig. 5, and versusm for various r, Fig. 6,
again as calculated for the following data sets:~a! original

FIG. 5. The functionK2,m(r )5(1/Dm)ln@Cm(r)/Cm1Dm(r)# ver-
sus lnr (Dm53) for various embedding dimensionsm calculated
for ~a! original data,~b! cleaned experimental signal after nonline
noise reduction, and~c! noise removed by nonlinear filter. Only in
case~b! is there a clear plateau atK2'0.1 ~basee!, dash-dotted
line.
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PRE 62 6501ESTIMATION OF THE ENTROPY OF THE SOLAR WIND FLOW
data, ~b! cleaned experimental signal after nonlinear no
reduction, and~c! noise that has been removed by the no
linear filter.

The values of this functionK2,m(r ) given in Eq.~8! ob-
tained after noise reduction versus lnr are shown in Fig. 5~b!
for various embedding dimensionsm ~we takeDm53!. For
8<m<12 there is a plateau atK2'0.1 ~basee! ~dash-dotted
line!. Strictly speaking, the ideal entropy of Eq.~5! is defined
in them→` limit ~in addition to ther→0 limit for both the
dimension and entropy!. However, the available number o
vectors decreases withm and the higher dimensions ar
dominated by noise, as discussed in Secs. II and III. Adm
tedly, it is not surprising that the plateau ofK2,m(r ) in Fig.

FIG. 6. The functionK2,m(r ) ~basee! versus the embedding
dimensionm for various distancesr in the scaling region calculate
for ~a! original data,~b! cleaned experimental signal after nonline
noise reduction, and~c! noise removed by nonlinear filter. Only i
case~b! does the average saturated value yield the correlation
tropy of K250.1060.06; see Tables I and II.
e
-

t-

5~b! for the entropy is narrower than the plateau forD2,m(r )
in Fig. 4~b! for the dimension. Apparently, these plateaus
also limited for larger, especially for largem, as seen for
m511 and 12 in Fig. 5~b! ~a large number of points is
needed form.10!. Nevertheless, as discussed in@22#, we
can calculate the entropy below a length scale ofr;e22. In
contrast, there is no plateau even for moderatem for the
original data contaminated with noise, Fig. 5~a!, and, obvi-
ously, for anym for the noise itself, Fig. 5~c!. As seen in Fig.
3~c!, the correlation sums are converging with lnr. Hence the
spacing between the lines in Eq.~8! is decreasing linearly
with ln r, as shown in Fig. 5~c!, which is a typical behavior
for the noise case. On the other hand, for an ideal determ
istic system, for largem within a scaling region, the spacin
between the parallel straight lines should be constant. T
demonstrates that the modern technique of nonlinear n
reduction@13–15# is necessary for a realistic calculation
the Kolmogorov entropy in the solar wind flow, and pro
ably in most real complex systems. By the way, the plate
in Fig. 5~b! for the cleaned solar wind data is similar to th
plateau for the~nuclear magnetic resonance! laser data~with
a larger number of data points,N538 000! obtained after
nonlinear noise reduction by Kantz and Schreiber, cf.~@15#,
Fig. 11.3!.

Next, the vertical spacing between the straight lin
K2,m(r ) calculated using the nonlinear filter versus the e
bedding dimensionm ~for m54, . . . ,12! for various dis-
tancesr in the scaling region with a plateau is shown in Fi
6 for ~a! original data,~b! filtered data, and~c! noise. In the
ideal case~infinite number of data points! the entropy for
noise would increase to infinity with increasingm, and in
particular we would have a linear increase for a Gauss
noise. Conversely, the entropy should decrease to zero f
regular periodic system and to a constant greater than
for a deterministic aperiodic system. Again, only for the fi
tered data in Fig. 6~b! do we see a clear saturation, while fo
the case of noise, Fig. 6~c!, the calculated entropy increase
with m, as it should for a stochastic system. Naturally, as
any real system, because the number of available vecto
decreasing withm, the entropy for the noise removed from
the solar wind data ceases to increase in Fig. 6~c!.

We also calculate the largest positive Lyapunov expon
lmax using a quite robust algorithm of Kantz@24#. We obtain
the magnitude of;0.1 for the data after nonlinear nois
reduction, in the same units as forK2 ~basee!. Certainly, a
reliable calculation of the Lyapunov exponent would requ
many more data points. Therefore, we can only demonst
that a positive largest Lyapunov exponent is not excluded

n-

TABLE II. The correlation entropyK2(r ) calculated from the
cleaned experimental data.

ln r Average 8<m<12

22.4 0.1060.03
22.5 0.1060.04
22.6 0.1060.06
22.8 0.1160.07
22.9 0.1160.08

Average over lnr 0.1060.06
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6502 PRE 62WIESŁAW M. MACEK AND STEFANO REDAELLI
general, the entropyKq is at most the sum of the positiv
Lyapunov exponentsSl i , e.g.,@3#. As shown in Table I, the
value of the Lyapunov exponent is consistent with the c
relation entropy K250.1, which should be its lowe
bound: K2<Sl i ~positive!. The time over which the mean
ingful prediction of the behavior of the system is possible
roughly ;1/lmax, e.g., @3#. Hence the predictability of the
system would be limited to hours@10#.

The measures of the attractor obtained have also b
subjected to surrogate data tests@12#. As is shown in@7#, Fig.
8, if the original data are indeed deterministic, analysis
these surrogate data will provide values that are statistic

FIG. 7. The functionK2,m(r ) ~basee! versus the embedding
dimensionm for various distancesr in the scaling region calculate
for the Hénon map~a51.4,b50.3! using 2000 iterates for~a! data
file with 5% noise,~b! filtered data after nonlinear noise reductio
and~c! noise removed by nonlinear filter. Only in case~b! does the
average saturated value yield the proper correlation entropy oK2

50.325~dash-dotted line!.
-

s

en

f
ly

distinct from those derived for the original data. Again, w
have found here that the solar wind data are sensitive to
test. In particular, as compared with the values of Table I,
Lempel-Ziv complexity calculated for shuffled data becom
1.0. Further, contrary to the case of the filtered solar w
data, there is no saturation of the functionK2,m(r ) for the
surrogate data for largem; instead this function increase
with m as it should for stochastic data.

Our next point is comparison of the estimates of the so
wind entropy with other classical model systems corrup
by noise. Therefore, we have rerun our analysis also w
two typical model systems: a discrete chaotic He´non map,
which is often used for calibration of the largest Lyapun

FIG. 8. The functionK2,m(r ) ~basee! versus the embedding
dimensionm for various distancesr in the scaling region calculated
for Rössler chaos equations~a50.15, b50.2, c510! using 4096
data points at intervals ofDt50.3 s,t52Dt; ~a! data file with 5%
noise,~b! filtered data after nonlinear noise reduction, and~c! noise
removed by nonlinear filter.
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exponent~a51.4,b50.3! using 2000 iterates, and a contin
ous chaotic system generated by Ro¨ssler equations~a
50.15,b50.2,c510! using 4096 data points at intervals
Dt50.3 s, t52Dt, both with purposely added 5% nois
The calculated values ofK2,m(r ) for both cases using th
nonlinear Schreiber filter versus the embedding dimensiom
~for m54, . . . ,12! for various distancesr in the scaling re-
gion with a plateau for~a! data file with added 5% noise,~b!
filtered data, and~c! noise removed by nonlinear filter ar
shown in Figs. 7 and 8, respectively. Only for the filter
data files ~b! does the average saturated value yield
proper correlation entropy~dash-dotted lines!, e.g., K2
50.32560.02 in Fig. 7~b! for the Hénon map@16#. Since the
number of available vectors is decreasing withm, the en-
tropy for the noise removed from the initially noisy He´non
map in Fig. 7~c! and for the noise removed by nonlinear filt
from the noisy Ro¨ssler data in Fig. 8~c! ceases to increas
with m. A somewhat similar saturation for largem is also
seen in Fig. 6~c! for the solar wind data. Also, deviation
from linear increase are seen in all these figures, Figs. 6~c!,
7~c!, and 8~c!, because the Schreiber filter does not neces
ily remove only a Gaussian noise, but possibly also its n
Gaussian component. On the other hand, in the corresp
ing case of the data cleaned by nonlinear filter in Figs. 6~b!,
7~b!, and 8~b! the entropy is decreasing withm, finally satu-
rating for largem. Clearly, the saturation in these figure
cannot result from decreasing of the available number
vectors with m, because, just on the contrary, we wou
rather have had a deeper decrease ofK2 with m instead.
Hence we believe that the saturation results from a determ
istic component of the system dynamics. Therefore, an a
fact in saturation in Fig. 6~b! is highly improbable. Surpris-
ingly, the saturation for the solar wind data is even be
than the saturation for the well-known noisy Ro¨ssler system,
with roughly the same number of points as our complex so
wind system, and for the classical noisy He´non map, but
with a smaller number of points~both cleaned by nonlinea
filter!. This shows again that the saturation in Fig. 6~b! for
the solar wind is not artificial. We have verified the robu
ness of the main results against change in both parametr
and m. Thus, we can expect that for sufficiently largem in
the scaling regionK2 should converge toward a consta
.
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according to Eq.~7!. Admittedly, this is merely an approxi
mation of the idealm→` limit in Eq. ~5! for q52.

Finally, the spacings between the parallel lines avera
in the saturation region 8<m<12 are taken asK2(r ). These
saturated values given in Fig. 6~b! averaged over lnr yield
the correlation entropyK250.1060.06 ~basee!. Naturally,
the errors given in Tables I and II are obtained assum
their normal distribution over the scaling range. Certain
these errors increase for smallerr and the maximum error in
the scaling region is given here. Anyway, a clear saturat
of K2,m(r ) in Fig. 6~b! for 8<m<12 and variousr in the
scaling region, below a critical scale ofr;e22, shows that
the correlation entropy of the attractor is positive and fini
as it should be for a chaotic system.

V. CONCLUSIONS

To conclude, the moving average linear filter remov
some amount of noise~leaving several percent!. However, in
practice, it could also possibly increase the calculated co
lation dimension. In contrast, after the nonlinear Schrei
filter, owing to more efficient noise reduction at small di
tances, we have obtained a better plateau, which is wider
shifted toward smaller distances, but the dimension is so
what reduced. However, this technique of nonlinear no
reduction allows a more realistic estimation of the Kolmo
orov correlation entropy. The entropy is positive, and pla
sibly the largest Lyapunov exponent is also positive loca
which would exhibit sensitive dependence on initial con
tions. The characteristics of the attractor obtained are sig
cantly different from those of the surrogate data. Hence
suggest that there exists an inertial manifold for the so
wind in the inner heliosphere, in which the system is nonl
ear and possibly chaotic, and where noise is certainly
dominant. This means that the observed irregular behavio
the velocity fluctuations results from intrinsic nonlinear ch
otic dynamics rather than from random external forces.
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