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Testing for Markovian character and modeling of intermittency in solar wind turbulence
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We present results of statistical analysis of solar wind turbulence using an approach based on the theory of
Markov processes. It is shown that the Chapman-Kolmogorov equation is approximately satisfied for the
turbulent cascade. We evaluate the first two Kramers-Moyal coefficients from experimental data and show that
the solution of the resulting Fokker-Planck equation agrees well with experimental probability distributions.
Our analysis provides evidence that the transfer of fluctuations from large to smaller eddies must be indepen-
dent of the dynamics on large scales and in particular it must be independent of the driving mechanisms for
solar wind turbulence. Our results also suggest the presence of a local transfer mechanism for magnetic field

fluctuations in solar wind turbulence.
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I. INTRODUCTION

Irregular dynamics of the solar-wind plasma exhibits
many similarities to fully developed hydrodynamic turbu-
lence. Numerous in sifu measurements of temporal variabil-
ity of parameters of the plasma have shown that their spectral
distributions usually have power-law character [1-4]. Inves-
tigations of the fluctuations have also revealed their non-
Gaussian probability distributions at small scales, which is
commonly attributed to the intermittency phenomenon [5-8].
In fact, the solar wind provides a unique laboratory for
studying high-Reynolds-number magnetohydrodynamic tur-
bulence (see, e.g., Refs. [2,9] for reviews).

One of the main problems in the studies of incompressible
hydrodynamical turbulence is explaining the statistics of ve-
locity fluctuations on different length scales. In magnetohy-
drodynamic turbulence this problem concerns in general also
magnetic field and density fluctuations. Conventionally, in
investigations of a turbulent cascade, statistical properties of
fluctuations Su(f)=u(t+7)—u(r) of a physical quantity u(z)
are examined, where 7 is the temporal (or spatial) scale. The
fluctuations are studied by examining their probability distri-
bution functions (PDFs) P(du/r)) or n-order moments
(6u(1)") of the distributions, also called structure functions.
Often, if the root mean square of velocity fluctuations is
small as compared to the mean velocity of the flow, one can
use the Taylor hypothesis, interpreting the temporal variation
ou, at a fixed position as a spatial variation di;, where [ is a
spatial scale corresponding to the temporal scale 7. In an
intermittent turbulent cascade, the PDF of the fluctuations is
non-Gaussian at small scales. When we go to larger scales,
the shape of the PDF changes, and finally there is a scale 7,
such that for 7> 7 the PDF is close to a Gaussian distribu-
tion [10,11].
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A number of models for the scaling exponents and scaling
of the probability distributions of the fluctuations have been
proposed. Many papers have also been devoted to experi-
mental verification of the proposed models (see, e.g., Refs.
[9-11] for reviews). Recently, a great deal of attention has
been devoted to investigations of the fluctuations in hydro-
dynamic turbulence from the point of view of the Markov
processes theory (see, e.g., Refs. [12-17]). In particular, re-
sults of the verification of the validity of the Chapman-
Kolmogorov equation as well as estimations of the Kramers-
Moyal coefficients from experimental data suggest that the
Markov processes approach may be appropriate to the de-
scription and modeling of the turbulent cascade [13,14,16].
The estimations of the Kramers-Moyal coefficients allow one
to determine the form of the Fokker-Planck equation govern-
ing the evolution of the probability distribution with scale for
the fluctuations. A model based on a Fokker-Planck equation
has been recently proposed for solar wind turbulence, but for
fluctuations of quantities that exhibit self-similar scaling
[18]. In the present paper, the Markov processes approach
has been applied to analysis of intermittent solar wind turbu-
lence. This approach seems to provide a contact point be-
tween the pure statistics and dynamical systems approach to
turbulence.

I1. DATA SET

In the plasma flow expanding from the Sun into interplan-
etary space we can distinguish several forms, in particular
the slow (<450 km/s) and fast (>600 km/s) solar wind
(see, e.g., Ref. [19] and references therein). At the solar mini-
mum the two forms are usually well separated; the fast wind
is more homogeneous and incompressible in comparison
with the slow wind.

Our goal here is to study properties of the turbulent cas-
cade, therefore we try to exclude effects associated with non-
stationary driving and spatial inhomogeneity of the turbu-
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lence. For this reason, in this paper we have chosen for
analysis the fast solar wind flowing from nonactive high-
latitude regions in the solar corona at the solar minimum.
This data set represents dynamics of the fast solar wind free
of dynamical interaction with the slow wind, as possibly the
most homogeneous and probably also most stationary case.
Therefore effects associated with nonstationary driving
should be eliminated here to a large extent, and we should
observe a state possibly closest to freely decaying turbu-
lence, which seems to be the most appropriate case to study
the turbulent cascade. Since we would like to examine fluc-
tuations in a wide range of scales, including small scales, we
focus here on magnetic field fluctuations, which are available
at much better time resolution in comparison with measure-
ments of plasma parameters (e.g., bulk velocity or density of
the plasma). However, we are aware of the importance of the
detailed analysis of other types of the solar wind, as well as
other plasma parameters, and we are going to carry out such
studies in the future.

We analyze here time series obtained by the Ulysses
spacecraft [20]. The magnetic field is measured by two inde-
pendent triaxial sensors of the Ulysses spacecraft: a vector
helium magnetometer (VHM) and a fluxgate magnetometer
(FGM). These two magnetometers are located on a radial
boom of the Ulysses spacecraft: the VHM sensor at the end
of the 5 m boom and the FGM sensor at 1.2 m inboard from
the VHM. The magnetometers use different physical prin-
ciples to measure three orthogonal components of the inter-
planetary magnetic field vector. The VHM sensor measure-
ments are based on the effect of the influence of an ambient
magnetic field on the efficiency of optical pumping of a
metastable population of He gas [21,22]. The FGM sensor
uses the classical technique of measuring external magnetic
fields by comparison of drive-coil currents needed to saturate
the cores in opposite directions [21,23].

This dual-magnetometer measurement technique gives the
possibility of detecting any background field caused by the
spacecraft devices, as well as provides a way of evaluating
the self-consistency of the measurements made by the two
sensors. The magnetometers have been designed, built, and
extensively tested to have adequate sensitivity and suffi-
ciently low intrinsic noise to measure the interplanetary mag-
netic fields. Overall, with all implemented corrections, the
two sensors are intercalibrated to better than 0.1 nT. In this
paper we use time series based on the VHM sensor measure-
ments prepared and provided by the Ulysses Magnetic Field
Investigation Team, whereas the FGM sensor data were only
used to assess the quality of the VHM measurements. A de-
tailed description of the experimental setup and data acqui-
sition process can be found in Ref. [21].

The data set analyzed here consists of about 1.3 107
measurements of the radial (the Sun-spacecraft axis) compo-
nent By of the magnetic field obtained by the Ulysses space-
craft from 70:1996 to 230:1996 (day of year:year) at a time
resolution of one second. The measurements have been ob-
tained at heliospheric latitudes from 29 to 44 degrees and at
radial distance from the Sun from 3.5 to 4.2 AU. Small gaps
(up to three missing points) in the data set have been filled
using linear interpolation. Further in this paper we consider
fluctuations of the radial component of the magnetic field
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FIG. 1. Power spectrum of the radial component of the solar-
wind magnetic field (solid line). The dashed line shows the spec-
trum of the type E(f) o f=>"3 for comparison.

defined as b(t)=Bg(t+7)—Bg(t). Presenting our results we
use here temporal scales and do not recast the fluctuations
into the space domain using the Taylor hypothesis. However,
since we analyze highly supersonic and super-Alfvénic flow
(mean velocity U=744 km/s in the reference system mov-
ing with the measuring instrument), the temporal scales
physically should be interpreted rather as spatial scales. As-
suming that the Taylor hypothesis is satisfied here, one can
easily transform the temporal scale 7 to the spatial scale /
using the relationship /=U7 [10]. However, in general it is
not possible to distinguish between temporal and spatial
variations in the case of one-point measurements of plasma
parameters, as it is for the Ulysses spacecraft.

In Fig. 1 we show the power spectrum of the radial com-
ponent of the magnetic field. As one can see, the power spec-
trum has a power-law character with the spectral exponent
very close to —5/3 in the inertial range identified here as
stretching approximately from 0.0002 to 0.075 Hz.

III. MARKOV PROCESSES APPROACH

We investigate here statistics of fluctuations b(z)
=B(t+7)—-B;(t) of a component B;(t+7) of the magnetic
field at a scale 7. We consider the fluctuations as a stochastic
process in scale, i.e., we assume that a turbulent cascade is
responsible for the transfer of a fluctuation b; at the largest
(energy-containing) scale 7; to a fluctuation b;_; at a smaller
scale 7;_;, then the fluctuation b,_; at the scale 7;_; to a fluc-
tuation b;_, at a scale 7,_,, and so forth until the dissipation
scale is reached. Using the joint probability density
P(b,;, 1 ;by, 1) of finding the fluctuations b, at a scale 7, and
b, at a scale 7,, where 7, < 7,, we can define the conditional
PDF as

P(by,73by, 1)
P(b1’7-1|b2’72) P(b2,7’2) . (1)
By analogy to the definition of the two-point probability dis-
tributions, we can define the joint and conditional probability
densities for longer sequences of fluctuations b,,b,,bs,... at
scales 7,7, 73, ... . In the case of a Markov stochastic pro-
cess, by definition the following condition must be satisfied:

P(by,71|by, 73; ... iby, Ty) = P(by, 7| by 7)., (2)
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thus the N-point joint PDF P(b,7;by,Ts; ... by, Ty) i
determined by the product of conditional probabilities
P(b;_y,7_1|b;,7;), where 7._; <7, A physical interpretation
of the Markov property expressed by Eq. (2) is that a given
stochastic process is “memoryless,” i.e., the most recent con-
ditioning determines completely the probability of transition
from the present to the next state of the stochastic process.
For a finite set of experimental data, the Markov property
can be verified by comparison of a conditional PDF
Pg(by, i |by, ) evaluated directly from data with the PDF
computed using the Chapman-Kolmogorov equation

©

P(b],Tl|b2,T2)= P(b],T]|b’,T’)P(b,,T’lbz,Tz)db,,

—00

3)

where 7, <7’ <r,. Equation (3) is a necessary condition for
a stochastic process to be Markovian. The Chapman-
Kolmogorov equation can be written in a differential form
using the so-called Kramers-Moyal expansion

* k
O3 (7 b ypioen
JaT k=1 db

bo, To) .

(4)

Kramers-Moyal coefficients D®(b,7) can be evaluated as
the limit A7—0 of the conditional moments M® (b, 7,A7),
namely,

DX(b,7) = lim MP(b,,A7) (5)
A7—0

and

MO (b, AP = —— J (b’ = bYP(b' .7 |b,)db’, (6)
kK'IAT)_,

where Ar=7—7". If DW(b,7)=0 then according to the
Pawula theorem DW(b,7)=0 for k=3 [24]. In this case,
starting from Eq. (4) we arrive at the Fokker-Planck equation

~ dP(b,7) _ (_ oD (b, 7) . #D®(b,7)

ar b b* )P(b’ . ()

which determines the evolution of the probability distribu-
tion function of a stochastic process generated by the Lange-
vin equation (using Tto definition)

db s
-7 DY (b, 7) + VD (b, DI (7), (8)
T

where I'(7) is the delta-correlated Gaussian noise. In com-
parison with the definition used in Ref. [24], the Kramers-
Moyal coefficients given here are multiplied by 7, which is
equivalent to a logarithmic length scale [16].

If Eq. (3) is satisfied, then the transition probability from
scale 7, to 7, can be divided into transitions from 7, to 7’ and
then from 7' to 7. Therefore, in the case of a turbulent
cascade, fulfillment of the Chapman-Kolmogorov equation
for all triplets 7, <7’ <, in the inertial range suggests the
presence of a local transfer mechanism in the cascade.
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FIG. 2. Contour plots illustrating verification of the Chapman-
Kolmogorov equation for 7;=750, 7/=1000, and 7,=1250 s. Solid
lines represent the conditional PDF Pg(b,, 7 |b,, 7) evaluated di-
rectly from data, whereas dashed lines show the conditional PDF
P(b,, 7 |by, ™) computed using Eq. (3). The subsequent isolines
correspond to the following levels of the PDF: 2.0, 0.7, 0.2, 0.07,
0.02 (from the middle of the plot).

Experimental conditional PDF P(b,, 7|b,,7,) can be ob-
tained directly from data in the following way. First, one can
estimate the joint PDF P(b,, 7,;b,,T,) using the number of
counts of different pairs (b,,b,) on a two-dimensional grid of
bins, and apply the normalization so that the integral (appro-
priate sum in practice) over all bins will be equal to one. The
one-dimensional PDF P(b,,7,) can be estimated similarly
using the one-dimensional grid of bins. Then one can com-
pute the conditional PDF P(b,,7|b,,7,) directly from Eq.
(1).

IV. RESULTS

In Fig. 2 we show superposed contour plots of the condi-
tional PDF estimated directly from data and the PDF com-
puted using Eq. (3) for 7,=750, 7 =1000, and 7,=1250 s.
One can see that corresponding contour lines for the two
probability distributions are very close to each other. This
indicates that the Chapman-Kolmogorov equation is (at least
approximately) satisfied for the range of scales from 7
=750 to 7»=1250s. In Fig. 3 we show the cuts through
the conditional probability distributions for fixed values
of b,. As one can see, points representing cuts through

PDF(b,)

10 N o . Y A
-15-1-05 0051 15-15-1-050 051 15-15-1-050 05 1 15
b, [nT] b, [nT] b, [nT]

FIG. 3. Verification of the Chapman-Kolmogorov equation (3)
for 7;,=750, 7 =1000, and 7,=1250 s. Comparisons of cuts through
Pr(by,7(|by,7) (points) and P(b,,7|b,,7,) (lines) from Fig. 2 are
shown for fixed values of b,, namely, (a) b,=-0.5nT, (b) b,
=0 nT, and (c) b,=0.5 nT.
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FIG. 4. The dependence of the coefficients (a) M m(b, 7,A7) and
(b) M@(b,7,A7) on b for 7=1000 and A7=100 s. (c) The depen-
dence of M@ (b, 7,A7) on MY (b, 7,A7).

Pg(by, 1 |by, ) fit well to the lines representing cuts
through P(b,,7|b,,T,). Repeating such a comparison for
different triplets 7,,7’,7, we have checked that Eq. (3) is
well satisfied in the inertial range (for scales from about
50 to 5000 s). For larger scales, outside the inertial range,
the larger the scale, the worse the agreement we observe
between the experimental PDF and that computed using Eq.
(3). Nevertheless, Eq. (3) seems to be fulfilled up to the scale
of about 24 h. Therefore, the necessary condition for Markov
processes is satisfied here in the entire range of scales avail-
able for our computations, unlike in the case of hydrody-
namic turbulence as reported in Ref. [16], where the cascade
is not Markovian for small scales, below the Taylor length
scale.

We have computed the coefficients M®(b, 7,A7) using
the definition of Eq. (6). In Figs. 4(a) and 4(b) we present
examples of the dependence of the coefficients M (b, 7, A7)
and M@ (b, 7,A7) on b for 7=1000 and A7=100 s. In Fig.
4(c) we show the dependence of MP(b,7,A7) on
M(])(b,T,AT), which have a more regular and symmetric
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FIG. 5. Dependence of the parameter a, on scale 7 [see Eq.

(10)].

form in comparison with the dependence of M m(b, 7,A7) on
b. We propose the following approximations: MV(b, 7, A7)
=A(1,ADb+Ay(T, AN +A5(7,ADb> and MP(b,7,A7)
=A,(1, A7) +As(,AD[MD(b,7,A7)]* as describing prop-
erly the experimental relationships shown in Figs. 4(a) and
4(c), correspondingly. Based on the approximations, we can
fit the parameters A;(7,A7) for a fixed 7 and changing A,
and finally compute the limits a,(7)=limy,_0A,(7,A7) for i
=1,...,5 (e.g., by a linear extrapolation toward A7=0) ob-
taining the following approximations:

D(l)(b, T)=a1(T)b+a2(T)b3+a3(T)b5 9)
and
DP(b,7) =ay(7) + as(D[DV (b, 7). (10)

Repeating the entire procedure for changing 7 we can also
estimate the dependence of the coefficients a; on 7. Applying
the algorithm, we have obtained the following results for
the inertial range (7<5000s): a;=-3.67%%, q,
=3.5exp(-0.00017), a3=-13.67°2, a,=0.000357"7, as
=1.2793 and outside the inertial range (7>50005s) a,
=-0.57"1%, a,=2, a;=-2.3, a,=0.0167"%, a5=1.75736, As
an illustration, in Fig. 5 we show the dependence of the
parameter a, on 7. One can notice a change in the depen-
dence for 7= 5000 s, i.e., at the end of the inertial range.

Parametrization of D'"(b, 7) and D@(b, 7) [shown in Egs.
(9) and (10), correspondingly] with experimentally fitted pa-
rameters a;(7) allows us to solve numerically Eq. (7) with
initial condition taken from parametrization of the experi-
mental PDF at a large scale 75, where the probability distri-
bution of fluctuations is approximately Gaussian. Therefore
we can compute numerically the PDF at scales 7<<7; and
compare it to the experimental PDF, which allows us to
verify directly our results. Such a comparison is shown in
Fig. 6 for 7;,=86 400 s. As one can see there is a good agree-
ment between experimental probability distributions and
those computed from the Fokker-Planck equation.

V. DISCUSSION AND CONCLUSIONS

We have shown that the Markov processes approach can
be applied to the description of the turbulent cascade in the
fast solar wind. The Chapman-Kolmogorov equation is ap-
proximately satisfied in the inertial range, as well as for
larger scales up to 7=86400 s. Numerical solution of the
Fokker-Planck equation agrees well with experimental prob-
ability distributions obtained directly from the data in the
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PDF(b)
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FIG. 6. Experimental probability distributions (points) and so-
lution of the Fokker-Planck equation (dashed lines) for initial con-
dition (solid line) obtained by approximation of the experimental
PDF by Gaussian distribution for 7=86 400 s. We show the com-
parison of the experimental PDF and solution of Eq. (7) for 7 equal
to 86 400, 30 000, 5000, 1000, 100 s (from the top). Probability
distributions for different scales have been shifted in the vertical
direction for clarity of presentation.

range of 7 from 100 to 86 400 s. Therefore, we can conclude
that for intermittent solar wind turbulence, the Markov pro-
cesses approach can provide a mathematical formalism ca-
pable of explaining the specific evolution of the shape of the
probability distribution with scale changing from the energy
containing scale down to the dissipation scale. Since the for-
malism describes properly the evolution of the probability
distribution with scale, obviously this should also work for
structure functions, which are defined as appropriate mo-
ments of the probability distributions. Admittedly, direct ana-
Iytical derivation of the scaling properties of the structure
functions can be difficult, but we expect that such studies can
be done numerically. As we noticed in the Introduction, the
Markov processes approach has been tested for hydrody-
namical turbulence in a number of papers, confirming its
Markovian character. Therefore, the results of our analysis of
solar wind turbulence confirm the universality of the Markov
processes approach to the description of turbulent cascades
in general. One should also notice that there is a theoretical
interest in the application of conditional probability distribu-
tions (and structure functions) to the description of turbulent
cascades [25,26].

In our opinion, the observed Markovian character is re-
lated to the universal character of large-scale instabilities,
which are fundamental physical mechanisms involved in the
generation of turbulence. One of the most fundamental as-
sumptions in the studies of turbulence is that in the fully
developed case (large Reynolds numbers) the turbulent cas-
cade in the inertial range has universal structure and proper-
ties, i.e., the properties are assumed to be independent of
details of the force driving the turbulent flow [10]. Given this
assumption, the transfer of fluctuations to smaller scales
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must be independent of the dynamics on large scales (which
are past scales from the point of view of a turbulent cascade),
because otherwise the structure of the process being the
driver of turbulence would be transferred toward smaller
scales, and no universal structure of the dynamics in the
inertial range would have been observed. This tendency of
turbulent flows to form universal cascades (universal charac-
ter of large-scale instabilities) provides a fundamental physi-
cal explanation for the observed Markovian (which physi-
cally means “memoryless”) character of solar wind
turbulence. Therefore, our results provide evidence that the
transfer of fluctuations in solar wind turbulence is really
“memoryless,” and that we should expect a universal struc-
ture in the turbulent dynamics.

Every Markov process must satisfy the Chapman-
Kolmogorov equation, which expresses the condition that the
probability density of the transition from the scale 7, to 7
can be subdivided into smaller steps, that is, the transition
from the scale 7, to 7', and then from the scale 7 to 7.
Therefore, in the case of a turbulent cascade, fulfillment of
the Chapman-Kolmogorov equation can be interpreted as the
presence of a local transfer mechanism in scales, and conse-
quently in the wave vector space, providing that the Taylor
hypothesis is satisfied. Local and nonlocal transfer mecha-
nisms can be distinguished in theoretical studies of turbu-
lence via shell models or numerical simulations (see, e.g.,
[27-29]), but it is very difficult to study the property of tur-
bulence using experimental data. The Markov processes ap-
proach seems to provide such a method. Namely, analyzing a
time series from a turbulent flow we should be able to iden-
tify the character of the dominating transfer mechanism for a
given quantity or between different quantities, i.e., we should
be able to answer the question of whether the mechanism is
local or nonlocal.

Therefore, another physical consequence of the Markov-
ian property is the local character of the transfer mechanism
of fluctuations in solar wind turbulence. In general, the ques-
tion of locality of the energy transfer in magnetohydrody-
namic turbulence is not well understood and quite compli-
cated because of the strong influence of the mean magnetic
field on small-scale plasma dynamics. The question of local-
ity of the energy transfer is of some interest, e.g., in the
studies of the dynamo mechanism to generate magnetic
fields in astrophysical objects, where in helical MHD turbu-
lence, nonlocal processes of generation of large-scale fields
by small-scale helicities are studied in detail (see, e.g., Sec.
6.2.1 of [11]). The question is also important for modeling
MHD flows and numerical simulations, e.g., in large-eddy
simulations, where low-pass filtering with respect to a cutoff
wave number requires some assumptions concerning the
transfer of energy around the cutoff wave number.

Since our results suggest rather the Markovian character
of the turbulent cascade in the solar wind, it indicates that the
local transfer mechanism dominates in solar wind turbu-
lence. Therefore dominating transfer of magnetic field fluc-
tuations has similar character as in the case of Kolmogorov
phenomenology describing turbulence in neutral fluids,
where according to the picture of Richardson cascade, the
energy transfer has local character in the wave vector space,
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i.e., the energy at a scale [ is transferred mainly to smaller
but comparable scales [10]. This result is somewhat surpris-
ing, because we analyze here magnetohydrodynamic turbu-
lence, which is rather a magnetic field dominated case.
Therefore, according to the classical Iroshnikov-Kraichnan
picture, due to the Alfvén effect, we could expect nonlocal
influence of large-scale magnetic field on small-scale turbu-
lent eddies, and so also nonlocal interactions between modes
[11]. Nevertheless, results of recent numerical simulations
suggest that local transfer mechanisms dominate in MHD

PHYSICAL REVIEW E 78, 026414 (2008)

turbulence [27-29]. Our paper provides experimental results
confirming this observation for magnetic-to-magnetic trans-
fer of fluctuations.
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